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ABSTRACT

This dissertation reports a study of the attitude control of spinnin_

satellites in circular earth orbits by means of passing current through

a single coil on board the vehicle. The interaction between this current

and the earth's magnetic field produces control torques. A new and

practical magnetic control law is presented and shown to produce (in the

absence of disturbances) asymptotic stability, from arbitrarily large

initial attitude errors and vehicle angular velocities, for any circular

orbit and any desired spin-axis direction.

Accurate estimates of the performance of this control system are

obtained by using a combination of Krylov-Bogoliubov averaging and other

heuristic techniques, supported by simulation studies. These estimates

place in evidence the influence of control system parameters, orbital

parameters, and the desired spin-axis direction upon system performance.

The usefulness of this magnetic control law is demonstrated by

general discussions of its mechanization and_ finally, by its application

to a representative mission. "J_.t_ %_
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I. I NTP_ODUCTION

The generation of attitude control torques by causing an interaction

between the vehicle and its environment has received considerable

attention. The primary appeal of these techniques is that they eliminate

the need for control propellant which would otherwise be required to

counteract the effect of secular disturbance torques. An additional

potential advantage is increased reliability attained through the elimina-

tion of mechanical components (e.g., pneumatic valves).

The environmental sources most commonly considered for attitude

control are the earth's gravitational field and the earth's magnetic

field. Gravity gradient control has been studied extensively and

satellites utilizing this concept have been placed in orbit [Ref. l-l].

Perhaps the most attractive feature of gravity gradient control is that

it is passive; the vehicle automatically aligns itself with its minimum

axis of inertia toward the earth's center. The only attitude sensors

required are those associated with the energy-removal system used for

damping and, in many instances, these can be eliminated by the use of

a passive energy-removal mechanism.

However, gravity gradient control has limitations which for some

applications are prohibitive. The nominal attitude of the vehicle is

constrained to be earth referenced. Consequently, gravitational torques

cannot be used to orient a vehicle in orbit around the earth toward the

sun, for example. Furthermore, the magnitude of the torques available,

and thus the speed of response of the system, is severely limited by

the mass distribution of the vehicle.

The limitations and advantages associated with magnetic attitude

control are rather different from those which relate to gravity gradient

control. Foremost of these is the ability to control the torque level

(within limits), thus removing the necessity to align with the environ-

mental field. This, on the other hand, implies the need for attitude

sensors. As will be shown, the direction as well as the magnitude of

the earth's magnetic field can vary significantly during the satellite

orbit. It is generally conceded, therefore, that magnetic control

1



systems must either be operated by ground command, or be equipped with

means for on-board measurement of the magnetic field.

Despite these considerable disadvantages several magnetic control

schemes have been advanced, and the method has been used in a limited

way in the TIROS and TRAAC satellites [Refs. 1-1, 1-2]. The future of

magnetic control depends largely upon the solution of several outstand-

ing unresolved problems and in particular upon the development of

simply implemented control laws.

A. PRELIMINARY CONCEPTS

The basic physical effect which makes possible magnetic generation

of control moments is the Lorentz force experienced by a moving charge

in a magnetic field, B. The cumulative effect of a moving distribution

of charge in a magnetic field is a torque, N. It is particularly

convenient to express this torque in terms of the magnetic dipole moment,

m, of the current distribution [Ref. 1-3].

_=mx_

m

where N is expressed in newton-meters, m in amp-m 2 and

webers/m 2 For a completely general charge distribution

(1.1)

in

lfrm=_ X'_dv
v

(1.2)

where v is the volume over which the current density

In the case of an N -turn planar current loop of area A
c c

current i

is distributed.

carrying a

m

m = NA i e (1.3)
c c n

where e is a unit vector normal to the plane of the coil in the usual
n

right-hand sense relative to the direction of current flow. Thus a

well-calibrated magnetic moment can be developed simply by passing a

current through a planar coil. This is, indeed, a simple and reliable

actuator.

2



Expression (1.1) demonstrates elegantly the basic limitation associ-

ated with magnetic control: the torque developed is always normal to

both B and _. Thus at each instant there is a direction, defined by

the magnetic field vector, along which no component of torque can be

generated with any m.

The function of any momentum removal system is to produce a torque

which will tend to remove the excess angular momentum stored in the

system. This momentum may be stored in the vehicle itself or in an

auxiliary storage mechanism (e.g., a set of reaction wheels). Figure 1-1

I

FIG. l-1. MOMENTUM REMOVAL GEOMETRY.

indicates a typical geometrical situation. Note that the excess angular

-momentum, , can be resolved into a component parallel to B and a

component, H , normal to B. It is clear that at any instant the

ideal policy for any magnetic control scheme is to generate a torque

opposing H . Any component of momentum parallel to B will be
±

unaffected.

If the relative orientation of B and were fixed there would

always be a direction along which momentum could accumulate without

bound. Fortunately, in almost all cases B varies widely in direction

relative to both the satellite axes and, more importantly, in inertial

coordinates as the vehicle traverses its orbit.* The precise nature of

It is important to recognize that B is a vector function defined

on a vector field. Thus we are concerned with the magnetic field

measured at the point in space occupied by the vehicle.

3



this variation is akey factor in determining the feasibility of mag-

netic control. Appendix A presents a development of the dipole model

of the earth's magnetic field in several coordinate frames defined in

the next chapter. It is worth noting here that, owing to the tilt of

the magnetic dipole relative to the earth's spin axis (approximately

ii deg), the components of the magnetic field depend to some extent upon

the rotation of the earth and nodal regression.

Considered in inertial coordinates, the dominant variation of the

components of B is at twice orbital frequency, while the total stored

momentum of the system (vehicle plus any momentum storage mechanism)

will generally vary negligibly over an orbit. Thus B and _ (Fig. i-i)

are in constant relative motion, so that a component of momentum not

removable at one point in orbit may very well be eliminated at some later

position in orbit. This phenomenon is essential to magnetic control;

its nonoccurrence in some orbits, notably in synchronous equatorial

orbits where the satellite is fixed in the magnetic field, represents a

fundamental limitation of magnetic control techniques.

As indicated in Appendix A the magnitude of the magnetic field

decreases as the cube of the orbital radius. Estimates of the altitude

at which the earth's field becomes ineffective as a control torque source

vary. It appears reasonable to consider magnetic control of vehicles at

altitudes as great as i0,000 to 20,000 nautical miles.

B. PREVIOUS CONTRIBUTIONS

Automatic control of vehicle attitude by magnetic techniques has

received considerable attention in the literature. The majority of the

contributions to date deal with control of fully stabilized vehicles,

while the most successful application of the concept has been in the

spinning TIROS satellites.

i. Fully Stabilized Vehicles

Magnetic control systems suggested for fully stabilized

vehicles are of two types, continuous and intermittent. The earliest

implementations suggested were of the former type. Thus far, only one

4



basic continuous scheme has been presented in the literature [Refs. 1-4,

1-5, 1-6, 1-7]. Consider Fig. 1-2, which is seen to be an evolution of

Fig. 1-1. As suggested above, it is desired that the torque generated

oppose H as shown in the figure. Since N is normal to both
l'

Plane Normal to

Normal to Hi

FiG. i-2. CONTINUOUS CONTROL GEOMETRY.

§

and m, m must be in the plane normal to H to achieve this result.
i

Furthermore, since for given magnitudes of _ and B the magnitude of

N will be greatest when m.B = 0, we arrive finally at the requirement

that m be in the direction of _XB.

The actual gain factor required by this procedure can be arrived

at by a least-square approach. Assume that the ideal control torque

would be a solution to the equation N = -KH E. Clearly, from the

geometry of Fig. 1-2, this equation will generally have no solution.

Consider then solving the normal equations

N + K _ = e (1.4)

in such a way that the squared-error,

yields:

e.e, is minimized.

(m • K(fiX )

This technique

(i .5)



Examination of (1.5) reveals that the solution vector _ will always

lie in the plane normal to HI' but is otherwise unspecified. Imposing

the efficiency constraint mentioned above (m'B = 0), a unique result

is obtained.

_ K(_ × H-E)
m = - (1.6)

2
B

Notice that, as mentioned previously, B 2 will vary in magnitude to a

degree depending upon the orbit, but usually by no more than a factor

of 4:1. It is reasonable then to consider a slightly less ideal control

system in which the B 2 term is replaced by a constant, thus reducing

the arithmetic requirements of the control law [Ref. 1-4].

It is clear that a magnetic moment m satisfying expression

(1.6) can always be generated given, for example, three orthogonal coils

with equal areas and turns. However, it is still necessary to establish

for any mission whether, in the light of kinematical considerations,

this system will prevent the unbounded accumulation of momentum along

some inertial direction. Intuitively, at least, this control law should

be effective if any type of magnetic control is feasible, because it is

at each instant doing its best to reduce HE"

The continuous control law of (1.6), while rather simple con-

ceptually, is not so simple to implement. In its pure form it requires

at least six multiplications (to form the cross product) and one

division. From the point of view of sensing it is rather displeasing,

because continuous measurements of all three components of both B and

HE are required.

These disadvantages can for the most part be avoided by noting

that if the vehicle possesses a momentum storage system (e.g., reaction

wheels), and the sole purpose of the magnetic torquing loop is the

transference of the excess stored momentum into the external environment,

then continuous control will generally not be required. It is sufficient

in this case to provide a system which hounds the total vehicle momentum

by intermittent torque application.

6



Intermittent magnetic attitude control of a fully stabilized

earth satellite has been mentioned briefly in Ref. 1-5 and discussed

in more detail in Ref. 1-7. One of the schemes in the latter reference

possesses similarities with the simple and elegant mechanization pre-

sented in Ref. 1-8. This system utilizes logic devices and threshold-

measuring sensors to obtain (nonsimultaneously) decoupled torques about

three orthogonal vehicle axes. These torques are used to desaturate

three orthogonal reaction wheels mounted parallel to the same axes.

The overall block diagram of a control system such as that

presented in Ref. 1-8 is shown in Fig. 1-3. The logic for this system

is based upon the observa£ion that in order to obtain a decoupled

torque about, for example, the z axis the components of both B and
m

m along this axis must be zero. This is seen by examining the expanded

torque equations below.

N =mB -mB
x yz z y

N = m B - m B (1.7)
y zx x z

N =mB -mB
z xy yx

This requirement places two constraints upon the torquing logic.

Additional requirements must be imposed in order to (a) produce a

correction only when needed to desaturate a wheel and (b) produce a

correction in the proper direction. Requirement (a) is accommodated

by using a threshold element with hysteresis to monitor the speed of

each of the reaction wheels; whenever the output of this element is

nonzero a correction will be made if the proper magnetic field condi-

tions (above) exist.* The correction will continue until the magnetic

field availability conditions are violated, or until the wheel is

sufficiently desaturated (as determined by the hysteresis level of the

speed detection element),whichever event occurs first.

Again, it is a tacit assumption, in most cases justified, that the

proper conditions will occur sufficiently often.
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The magnetic field sensors utilized in this system are also

threshold devices. Their outputs are used to indicate when the component

along any single axis is sufficiently near zero for a decoupled torque

to be produced and, at this time, how the magnetic field vector is

oriented in the plane of the other two axes. The latter information is

used to produce a torque of the desired sign. For example, consider

the production of a torque to desaturate the z-axis reaction wheel. The

torque is desired to oppose the stored wheel momentum and at the time

of torquing B _ 0, m = 0 for the reasons mentioned above. The
z z

torque produced is

N = m B -m B (1.8)
z xy yx

where m , for example, is restricted to the discrete values -mcy 0y

and +mcy. Selection of the signs of mx and my is based upon

consideration of where the B vector lies; for example if B exceeds
x

its threshold while B does not, application of a magnetic moment
Y

with the y-axis coil is indicated. The direction of the current in the

coil will be determined by the sign of B and the sign of the z-axis
x

wheel speed.

Figure 1-4 presents the logic for using a y-axis magnetic moment

to desaturate the z-axis wheel. The torquing logic for using an x-axiS

coil to desaturate the z-axis wheel would be similar, and the complete

system is a collection of three such logic systems. Notice that three

magnetometers suffice for such a system, because the magnetometers for

threshold detection (e.g.', the B magnetometer of the figure)will also
. x

indicate when the magnetic field is primarily along the other two axes.

_With an intermittent control scheme, such as the one described

above, it is reasonable to consider using fewer than three coils. With

two coils, for example, there will be one axis of thevehicle along which

no magnetic moment can be generated. If a sizable componeng of the

magnetic field were always along this axis, such a scheme might make a

great deal of sense.

A single coil system would be tolerable only if there were some

axis of the vehicle along which magnetic torques were never required.

9
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This situation is particularly pertinent to the attitude control of

spinning vehicles,

2. Spinning Vehicles

Magnetic attitude control techniques are particularly well

adapted to the problem of precessing the spin axis of a spinning vehicle

[Ref. i-2, 1-9]. A single coil normal to the spin axis is sufficient

for this purpose, since only torques normal to the spin axis are required.

In contrast to mass-expulsion systems which must be pulsed, thus exciting

wobble in the motion, the magnetic torque can be applied continuously

for relatively long intervals.

Again, the magnetic control systems for spinning vehicles can be

classified as: (a) those in which control effort is being applied

continuously, and, (b) those in which the control is intermittent. Only

the latter have been treated in the literature [Ref. 1-2, 1-9]. This is

not surprising since all contributions to date (for both spinning and

fully stabilized vehicles) have treated only the small-error case for

which intermittent schemes, which depend upon the momentum storage of

the spinning vehicle (and a passive damper) to maintain short-term

accuracy, are adequate. A discussion of intermittent magnetic control

for spinning vehicles is presented in Appendix B.

C. CONTROL CONFIGURATIONS FOR SPINNING VEHICLES

The simplest control system for a spinning vehicle is no control

system at all; that is, sufficient control accuracy may be provided by

the stored momentum and, perhaps, a passive damper to maintain the

alignment of the stored momentum with the spin axis [Ref. i-i0]. The

applicability of this scheme is limited to missions of short duration

having modest accuracy requirements.

Generally, due to the action of disturbance torques and motion of

the desired spin-axis orientation, it is necessary to provide an

auxiliary system capable of altering both the magnitude of the stored

momentum (spin-speed control) and the direction (attitude control) of

the spin axis. The former problem, spin-speed control, is straight-

forward because, for a vehicle possessing symmetry with respect to the

ii



spin axis, the spin-speed differential equation is simply:

=N
s s

(1.9)

where _ is the spin speed and N is the total torque (control and
s s

disturbance) along the spin axis. For all practical purposes, _s can

be considered constant because it will vary only minutely from its

nominal value, again due to the relatively large stored momentum which

is a characteristic of spinning vehicles. Thus, it is possible to

consider the attitude control problem as independent of the spin-speed

control and, moreover, to assume the spin speed to be constant. In this

dissertation, only the problem of attitude control is considered.

The most versatile method of altering the spin-axis direction is :by

means of a mass-expulsion system, Such a system is self-contained and

is not affected by the environment of the satellite. Changes in attitude

are accomplished by torque pulses applied normal to the spin axis and

timed with the spin of the satellite so that the required inertial change

in the total momentum is achieved. This pulsing excites significant

transverse angular velocities in the vehicle which in turn cause the

spin axis to wobble following the correction. Most of this wobble can

be avoided by applying two pulses so that the wobble produced by the

second pulse exactly cancels that caused by the first pulse [Ref. i-ii].

Magnetic torquing is another technique which may be used to alter

the spin-axis attitude. This method is particularly appealing because

a single coil in a plane normal to the spin axis can be used to produce

torques normal to the spin axis. Damping can be achieved by passive

techniques (a mechanical damper) or by active (magnetic) techniques.

The latter approach is developed in a subsequent chapter.

The major advantages offered by magnetic control in relation to mass-

expulsion techniques are increased reliability (by eliminating mechanical

actuators) and reduced system weight (because system weight is inde-

pendent of mission duration).

12



D. CONTRIBUTIONS

As mentioned above, previous investigations of magnetic control of

spinning vehicles have dealt only with the problem of removing, or

reducing, small attitude errors. Furthermore, only specific applica-

tions have been examined--for example, alignment of the spin axis normal

to the plane of the vehicle's orbit. It is important, therefore, to

extend the understanding of the problem, both in the direction of

considering large attitude errors and by examining general applications.

However, it is not enough just to demonstrate feasibility; it is neces-

sary also to develop a practical, simply mechanized control law which

has general applicability.

This dissertation deals specifically with the attitude control of an

axially symmetric, rigid, spinning space vehicle in a circular earth

orbit by means of passing current (on a continuous, rather than intermit-

tent, basis) through a single coil so aligned as to produce a magnetic

moment along the spin axis of the vehicle.

The following are the principal contributions of this dissertation:

i. A new control law is developed for magnetic attitude control of

spinning vehicles. This control law includes provisions for both

position control and active magnetic wobble damping (Chapter III).

2. The theoretical feasibility of magnetic attitude control of

spinning vehicles is demonstrated by showing that the above control

law produces asymptotic stability in-the-large for a satellite in a

circular earth orbit of any inclination with the desired spin-axis

direction inertially fixed, but otherwise arbitrary (Chapter IV).

3. The performance of the undisturbed system with this control law

is evaluated by deriving estimates for the solutions to the equations

of motion (which are time varying and, for large errors, nonlinear).

These results indicate the influence of the altitude, the orbital

inclination and the desired spin-axis direction upon the response of

the undisturbed system (Chapter V).

4. The large-error response of the feedback control law developed

in this study is shown, for signum control of the coil current, to

compare very favorably with the response using minimal-time control

programs derived by applying Pontryagin's maximum principle (Chapter VI).

5. The feedback control law is shown to be practical by general

discussions of the relationship between the mechanization problem

(e.g., measurement of the variables required in the control law) and

the mission of the satellite (Chapter VIII), and finally, by its

13



application to a specific representative mission with disturbances taken
into account (Chapter IX). The evaluation of the response of the system

to disturbances (which requires machine solution of the equations of

motion) is greatly facilitated by applying the techniques of Krylov and

Bogoliubov to obtain averaged equations of motion which can be solved
much more efficiently than the exact equations of motion (Chapter VII).

14



II. PRELIMINARY DEVELOPMENTS

In this chapter coordinate frames are defined, and the general

equations of motion required in subsequent chapters are developed.

A. COORDINATE SYSTEMS

Coordinate geometry plays a major role in any study involving the

earth's magnetic field, as will be seen. It is necessary, therefore, to

define at the outset a complete system of coordinate frames which will

be employed consistently in the following developments.

The fundamental coordinate sets required are shown in the following

three figures. Figure 2-1 defines the orbit and orbital position of the

vehicle relative to the inertially stationary (Xe' Ye' Ze) coordinate

frame, where the z axis is along the spin axis of the earth, and the
e

z

°\

Ze,Z a

Orbit Plane

Yn

x
e

f

Autumnal

Equinox
Xa,X n

x
o

Ye

Equatorial Plane

Vehicle

Position

Ya

FIG. 2-1. ORBITAL-EQUATORIAL COORDINATE FRAMES.



x axis is aligned with the Autumnal Equinox. The three angles so
e

defined are 8. (the orbital inclination), _ (the position of the
1

ascending line of nodes), and _ (the orbit position). For any

particular circular orbit 0. is constant, _ is equal to co , and
1 o

the rate of change of _ is given by

/R_ 2= cosradJsoc
\ro/ o i

(2.1)

where J is approximately

radius of the orbit and R
e

rate is, of course,

1.64 X 10-3 [Refs. i-Ii 2-1] r is the
' _ O

is the radius of the earth. The orbital

coo = --_ rad/sec
(2.2)

where G is the universal gravitational constant and M is the mass of

the earth. Notice that 6 is, at its maximum, approximately three

orders of magnitude less than the orbital rate.

Figure 2-2 defines the desired spin-axis attitude relative to the

inertially fixed (Xe' Ye' Ze) coordinate frame. Notice that the angle

R can be chosen arbitrarily since x R and YR are located arbitrarily

(with yR __ XR) in the plane normal to z R. The (XR' YR' ZR) coordinate

frame will be referred to as the reference coordinate frame.

It will be useful in the following discussion to define (XR' YR' ZR)

relative to the (Xn' Yn' Zn ) coordinate axes. This definition can

be made in terms of the three angles 5, _, and _' defined in

Fig. 2-3. Notice that whenever the (XR' YR' ZR) frame is inertially

fixed, the angles 5, @, and _' will be time varying owing to the

tlme.varlatlon of 6. This variation can be derived by imposing directly

the consistency of Figs. 2-2 and 2-3 with the relationship between

(Xn' Yn' Zn) and (Xe, ye_ ze) as defined in Fig. 2-1. This procedure

yields:

16



Desired

Spin-Axis Direction

\
\
\
\
\

z R

P

z
e Reference

Plane

x
e

Q

x R

Ye

Equatorial

Plane

FIG. 2-2. DEFINITION OF THE REFERENCE COORDINATE

FRAME RELATIVE TO THE EQUATORIAL PLANE.

cos @ = cos e. cos P + sin 8. sin P sin (B-Q)
1 l

sin

cos 5

sin e. cos P - cos e. sin P sin (B-Q)
i 1

sin P cos (B-Q)

sin _'
sin P sin R cos e. - [cos P sin R sin (B-Q) + cos R cos (_-Q)]sin e.

I i

cos _ m sin P cos R cos @. + [-cos P cos R sin (B-Q) + sin R cos (_-Q)]sin e.
1 1

where @ and P are assumed to be always in the range [0, _].

In the analyses which follow, time variation of _ will be neglected

(as a dynamic effect), so that the (Xn' Yn' Zn) axes will be inertially

fixed. Justification of this assumption is based upon the extremely slow
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FIG. 2-3. DEFINITION OF THE REFERENCE COORDINATE

FRAME RELATIVE TO THE ORBIT PLANE.

variation of _ (less than i0 deg per day in the lowest equatorial

orbit). Alternately, assuming _ to be constant is precisely equivalent

to restricting the problem definition to vehicles in orbit around a

spherical earth.

With this assumption the angles _, _, and _' will be constant

with stationary reference axes. Moreover, _' can be made equal to

zero by choosing the angle R appropriately, so that only the angles

and _ are necessary to define the relationship between the nodal

coordinate set (Xn' Yn' Zn ) and the reference coordinates. This scheme

will be used throughout.*

This procedure of defining _' = 0 could also be extended to the

general case when _ is considered as time varying. If this were

done, the x and YR axes would be moving in inertial space even in

the importan_ case when ZR, the nominal spin-axis direction, is fixed

inertially.
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Two additional coordinate frames must be defined. The (Xb' Yb' Zb)

axes form an orthogonal set fixed in the spinning vehicle, with the z b

axis as the spin axis. The transformation from the reference frame

(XR' YR' ZR) to the body frame (Xb' Yb' Zb) is given by a matrix of

direction cosines, A:

exb

-- !

OY b I

I

_ ezb J

a
ii

= a21

a31

a12

a22

a32

a
13

a23

a33

xR

I

yR I

zR
.J

(2.3)

The (Xl' YI' Zl)

body frame. Thus

xl

e

yl

zl

coordinate frame will be defined by "despinning" the

cos y -sin y 0

= I sin y cos y 0

L 0 0 1

exb

-ieyb

j J

(2.4)

where y = _st+/o. The orientation of the (Xl, yl,.Zl)

the reference axes is defined by the matrix C:

I,.
exl _Cll c12 c13

ey I = c21 c22 c23

ezl Lc31 c32 c33

xR

I

zR

set relative to

(2.5)

The angle Yo is defined so that with ideal spin-axis attitude

(ezb --= ezR) the matrix C is the identity matrix.

The symbol exb ,
axis.

for example, denotes the unit vector along the x b
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B. EQUATIONS OF MOTION

i. Dynamical Equations

The dynamical equations describing the motion of a rigid body

are Euler's equations [Ref. 2-2]:

I _ + (I - I )co co : Nxbxx z y yz

I _ + (1 - I )co co = N (2.6)
y y x z xz yb

I _o + (Iy Ix)coxcoyz z - = Nzb

where

Ix, Iy, I z

Nxb, Ny b, Nzb

are the principal axis moments of inertia.

are the components of external torque in body

coordinates.

co , coy, cox z
are the components of the total inertial angular

velocity of the (Xb, Yb, Zb) coordinate frame

resolved in the (Xb' Yb' Zb) coordinate axes.

For the symmetric spinning vehicle, it is assumed that I = I
y x

co = co , a constant. The dynamical equations then become:z s

and

=- kco_ + n
x s y x

= + kco c0 + n
y s x y

(2.7)

where

N N I - I
xb

n - n = _ k -
z x

x I ' y I ' I
x x x

With a single coil normal to the spin axis the magnetic moment

m is aligned with the spin axis. Thus, from expression (i.i), the

components of control torque (in newton-meters) are:
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Nyb

Nzb

0 -m
c

m 0
c

0 0

0 Bxb

0 By b

0 Bzb

(2.8)

where m is the (scalar) magnetic moment produced by current in the
c

torquing coil (in amp-m2), and Bxb , Byb, Bzb are the components of

the earth's magnetic field in body coordinates in webers/m 2. For

purposes of normalization, the control u will be defined as

m m
c c

u - - tz._

z s s

The controlled equations can be written as

m i

I
t

x = -kC0s _Jy - (i + k)0JsBybU ]

!
!

_ = kaJ w + (1 + k)_sBxbU
y s x

(2.10)

It is of interest to express the vehicle dynamics in terms of

the inertial angular velocity of the (Xl' YI' zl) coordinate frame;

expressed in the (xl' YI' zl) axes, this angular velocity has components

Fcos y

w2 I Lsin r
ii

-sin
!

COS bJ

• Y_

(2.zl)

where _3 is zero because this coordinate frame has been defined as

"despun" relative to the vehicle coordinate axes. Define

S _
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Then

+ D II
Y

Pursuing this development yields:

_01 -sin _-

= (i + k)_o

I cos r
1

-sin y n 2

or, finally

001 = -(I + k)00s_2 + n1

_2 = (i + k)_s_ 1 + n2

(2.12)

where nl, n2 are the two components of the normalized applied torque

in (Xl' YI' Zl) coordinates as in (2.7). The equations with magnetic

control are, from (2.10) and (2.12):

_i = - (i + k)_s[_ 2 + BylU ]

:_2 = + (i + k)Ws[031 + BxlU ]

I i,,

(2.13)

2. K_nematical Equations

The Minematical equations (that is, those which give the time-

rate-of-change of the attitude variables) are developed using two types

of attltude-variables, direction cosines and Euler parameters.

Direction cosines are particularly convenient in the subsequent analyses

because: (£) only three are necessary to define the spin-axis position
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in reference coordinates, and (ii) the feedback control law developed

is simply expressed in terms of direction cosines. On the other hand,

Euler parameters are convenient for numerical integration of the

differential equations because they allow the use of four attitude variables

instead of the nine direction cosines. It should be noted that three

orthogonal rotation angles (such as Euler angles) are unsuitable for a

study of this nature because the rate of change of one of the angles will

become unbounded for certain attitudes; furthermore, the differential

equations with direction cosines and with Euler parameters exhibit a

useful symmetry.

a. Direction Cosine Kinematics

Let p, q, and r be the components in vehicle coordinates

of the angular velocity of the vehicle coordinate frame relative to the

reference coordinate frame. Let _x' _y' and _z Rbe the components

in reference coordinates of the angular velocity, _ , of the reference

coordinate frame relative to inertial space. It is desirable to express

the time-rate-of-change of the direction cosines in terms of _ ,
x _y'

Wz, _x' _y' _z' and the direction cosines.

The kinematical equations in terms of p, q, r, and the

direction cosines are well-known [Refs. 2-3, 2-4]. For the matrix A

defined in (2.3):

w

0

r

-q
I

A T = A -I

-r q

0 -p A

p 0

Utilizing the fact that

aij = col (aij) , the cofactor of the element

very useful identities [Ref. 2-4].

and det A = I,

a...

ij

(2.14)

it is seen that

This yields nine
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Notice that

fx' fly' and fz by:

all_ a22a33 - a23a32

a12_ a23a31 - a21a33

al3 _ a21a32 - a22a31

a21 _ a13a32 - a12a33

a22 _ a1ia33 - a13a31

a23 _ a12a31 - alla32

a31 _ a12a23 - a13a22

a32 _ a13a21 - alla23

a33 _ alla22 - a12a21

(2.15)

p, q, r are given in terms of _x' _y' _z'

in m -.& m 7

p _ _2 I
x x

!

I- A fl
Y I Y

q

r _z fz I

Then, combining (2.14), (2.15), and (2.16):

where

I A = - P(_o)A + AP(n) I

(2.16)

(2.17)
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P(a) =

0 -_
z y

_z 0 -_x

-_ _ 0
y x

m

Similarly, replacing A by C, _x by el, _y by _2 and _z by

zero, the rate of change of the matrix C can be derived.

b. Euler Parameter Kinematics

In a similar manner, the differential equations for the

Euler parameters can be derived. In terms of p, q, and r [Ref. 2-3]:

E2

E3

q

1
= 2

J

0 r -q

-r 0 p

q -p 0

-p -q -r

P E1 '

E 3

(2.1s)

The Euler parameters admit to the following identity

4

Ej_I

j=l

Furthermore, the direction cosines may be expressed in terms of the

Euler parameters:

a12 -- 2(EIE 2 + E3E 4)

a13 ------2(EIE 3 - E2E 4)

a21 -- 2(EIE 2 - E3E 4)
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2 2 _ 2 (2.19)
a22 _- E 1 + E 2 - E 3 + E 4

a23 _ 2(E2E 3 + E1E 4)

a31 -_ 2(E1E 3 + E2E 4)

a32 _ 2(E2E 3 - EIE 4)

E_I 2 _ 2a33 _- _ E2 + l_ 3 + E4

Utilizing relationships (2.16), (2.18), and (2.19) the following result

is obtained:

e-

-I
E2 = 1_
• I 2

E3 I

• 1

m

0 w -_ w
z y x

-co 0 w w
z x y

-w 0 w
y x z

-w -w -w 0
x y z

0 _ -_ -_
z y x

-_ 0 fl -_
z x y

y x z

x y z
-- m

!E 3

- E4 J

(2.20)

c. The Simplified Model

The "exact" description of the system under consideration can

' be obtained by combining (2.10) and (2.17). However, this set of equations

is not particularly appealing to the intuition. It is possible to derive

a simplified model which, though it is less rigorous, will yield valuable

insight into the design of a magnetic control system.

The concept of a spinning satellite suggests that the angular

velocity about the spin axis is much larger than that about either of the

transverse axes--that is, that the total momentum vector is very nearly

aligned with the spin axis.* The dynamics described above by Euler's

The terminology "spin axis" refers to the body-fixed

the instantaneous total angular velocity vector.

z b axis, not

26



equations can be described equivalently by Newton's second law in

rotational form. That is,

R
H + _R × y = _ (2.21)

where H is the rate of change of the total momentum vector relative to

the (XR' YR' ZR) coordinate frame, N is the external torque (here the

control torque) and _R is the angular velocity of the reference

coordinate frame relative to inertial space, as before. The torque, N,

for magnetic control is

m

N=m×B

where, for the single-coil system under consideration,

m = mcezb = HsUezb
(2.22)

with u defined in (2.9). Now, assuming that the total momentum vector

is exactly aligned with the spin axis (that is, H = Hsezb) , Eq. (2.21)

assumes a very interesting form:

H + × H = (H X B)u (2.23)

For convenience define the normalized momentum components in reference

coordinates as:

HyR H
h HxR h h zR (2.24)

x H ' y H ' z H
s s s

and let h be the unit vector with these components in the (XR' YR' ZR)

frame. Then

+ (Bu (2.25)

27



These equations will be referred to as the simplified model of the

system.

It is of interest to compare these equations with the

"exact" model derived earlier.* Notice that the variables defined in

(2.24) have meaning in the exact model as well but that they will not

generally form a unit vector. The total momentum can be written in

(Xl' Yl' Zl) space as:

= I (Wlexl + -- ) + -- (2.26)x _2eyl Hsezl

Then, in (XR' YR' ZR) space the normalized momentum components are:

I

h
x

h
Y

h
z

m

Cll

= c12

c13

c21

c22

c23

I

x bJ
C3l H-- 1

s

I
x

c32 _ co2
s

c33 1

(2.27)

Notice that with e I = w 2 = O, °(2.27) reduces to hx = c31' hy = c32 ,

and h = •
z c33

Using expression (2.21) without assuming alignment of

and H, the components in the reference coordinate frame of the time-

rate-of-change of the normalized momentum vector relative to this

coordinate frame can be derived for the exact equations of motion:

Hereafter the quotation marks on "exact" will be omitted, but their

presence is understood.
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m

h • exR = _I hz y - _yhz + (BzRhy - ByRhz)U

Ix CByR(Cl3_ 1 ]+ _- + c23_ 2) - BzR(Cl2_ 1 + c22_2 )
s

m

h " e = _h
yR x z - _ h + (BxRh - B h )uz x z zRx

(2.28)

x
+ _-- zR(CllWl + c21_2 ) - BxR(Cl3_ 1 + c23t02)

s

u

h • ezR = _y xh - _hy + (ByRh x - BxRhy)U

Ix IB ByR(C11_ 1 ]+ _-- xR(CI2_I + c22_2 ) - + c21_ 2)
s

u

Upon expanding the equations of the simplified model, we find that they

agree precisely with the equations above for el = _2 = 0. Furthermore,

it is natural to ask how much the response of the simplified model (in

terms of hx, hy, hz ) resembles that of the exact model (in terms of

c33). The answer, from digital computer solution of bothc31, c32,

sets of equations, is that (for the control system developed in the next

chapter) the systems respond quite similarly except for small attitude

errors. The degree of similarity is dependent upon the magnitude of the

transverse angular velocities and, therefore, upon the amount of damping

provided.
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I I I. CONTROL LAW DEVELOPMENT

The attitude control system for a spinning vehicle has two basic

functions--the reorientation of the total momentum vector (position

control) and the alignment of the spin axis with the momentum vector by

removal of the transverse components of angular velocity (damping). The

former function must be accomplished by an active system which applies

external torques to the vehicle; damping, however, since it does not

necessarily entail a change in the total momentum, can be accomplished

by passive dampers which remove energy from the system whenever excited

by transverse angular velocities. Typical passive dampers are a spring-

restrained mass moving in a viscous medium (or coupled to a viscous damper),

and an annular ring (in a plane normal to the spin axis) which is partially

filled with mercury [Refs. i-i0, 3-1].

Typically, then, the position control and the damping device function

independently in a spinning vehicle. Furthermore, given any position

control system, it is possible to consider combining it with any damping

device with sufficient energy removal capability. In this discussion,

however, a control law will be developed in which the damping is pro-

vided by active techniques. For this scheme, it will be possible to

specify precisely the "amount" of damping required to produce asymptotic

stability.

A. POSITION CONTROL

The goal of the position control can be regarded, in terms of the

third-order simplified model, as bringing the system to the equilibrium

state h = h = O, h = 1 (hereafter referred to as the origin) Thus,
x y z

a control policy which always causes h to increase at any point away
z

from the origin, or at least never to decrease, would appear to be a

good one. With _R = O, that is, an inertially fixed desired spin-axis

direction, ZR:

z = (ByRhx - BxRhy)U (3.1)
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Defining

o h = B h - BxRh (3.2)yR x y

it is clear that a control of the form

u h = rl(o h) (3.3)

where the function _ is of the general form shown in Fig. 3-1, will be

very desirable. With this control, hz > 0 except at times when oh = O.

_(_)

Q(O) = 0

_Q(_)> 0 for 0 i/ 0

FIG. 3-i. THE CONTROL FUNCTION u = _(0).

Translating this control to the exact system model we note that

from (2.27):

I

= x
h x c31 + _-- (CllWl + c21_ 2)

s

I

h + x
y = c32 _ (Cl2Wl + c22c02 )

s
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Neglecting the rate-dependent terms (on the premise that the position

control should be a function of the position variables only), the

position error function becomes:

Op = ByRC31 - BxRC32
(3.4)

This error function can be expressed in terms of magnetic field components

measured in (Xl' Yl' zl) coordinates or in terms of components measured

directly in vehicle coordinates as:

Op = BxlC23 - BylCl3

or (3.5)

Op = Bxba23 - Bybal3

These forms are convenient both for the analyses which follow and for

mechanization considerations.

B. ACTIVE DAMPING

Active magnetic damping (if attainable) is particularly appealing for

use in conjunction with a magnetic position control because no additional

actuator is required. Assume a total error function of the form:

o = 0 + KRO R (3.6)P

The problem is to: (i) find OR, and (ii) specify K R.

One possible mechanism for passive damping is the energy dissipation

caused by the eddy currents induced in a circular shorted loop of N
c

turns located in a plane normal to the spin axis. An analysis of this

effect (which provides only a minute amount of damping in any practical

case) will provide insight into the development of an active damping

law. Consider, as shown in Fig. 3-2, a shorted loop of N turns in
c

the (Xl, yl ) plane as defined in Chapter II. The emf induced in the

loop is:
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_zl = _zb (Spin Axis)

Vehicle

N -Turn

S_orted Coil

FIG. 3-2. SHORTED LOOP FOR PASSIVE

EDDY CURRENT DAMPING.

d_
e = - N

c dt
(3.7)

where $ is the total magnetic flux linking the coil.

area of the loop, A c, and the magnetic field vector:

= (_ • _zl)Ac

In terms of the

(3.8)

Therefore

e = - NcAc(B • ezl + B • ezl) (3.9)

where the overscript "i" denotes time differentiation with respect to

the (Xl' YI' Zl) coordinate frame. Since ezl is identically zero:

e = - N A B • (3.10)
c c ezl

Using the law of Coriolis regarding time differentiation with respect to

rotating coordinate frames [Ref. 2-2]:

e_ --i --
B = B - 0_ X B (3.11)
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where the components of _1 in (Xl' Yl' Zl) space are, respectively,

el ' _2 ' and zero.

_s a first approximation, the rate of change of B in the inertial

(Xe' Ye' Ze ) coordinate frame can be neglected, since the frequenciest

involved are no more than twice orbital frequency. With the term B

neglected, (3.10) can be expanded to yield:

e = NcAc(Byl_l - BlW2) (3.12)

If the coil is formed by N turns of wire with a resistance per unit
c

length of p, and each turn is of length _, the current induced in

the coil is, neglecting inductive reactance:

A

c (Byl_ 1i = p_ - BxlW2 )
(3.13)

Assuming that all other sources of magnetic moment (e.g. eddy currents

in the structure of the vehicle) are negligible, the magnetic moment is

N A 2

-- c c (Byl_ _ -- (3.14)m - p_ 1 Bxl_2)ezl

or, transforming into variables referenced to the spinning

body coordinate frame

N A 2

-- c c (BybW xm = --_ - Bxb_y)ezb

(Xb' Yb' Zb)

(3.15)

These naturally induced eddy currents have the effect of reducing

the kinetic energy of the satellite. For a symmetric spinning vehicle,

the total kinetic energy is

1 2+ 2 izW_ ]T K = _ EIx(°Jl w 2) + (3.16)

In the parlance of expression (2.13), the control, u, produced by the

above effect is
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NA 2
cc

u = p_---_ (BylW I - BxlW 2)
s

(3.17)

Then along the trajectories of the system as defined in (2.13):

TK = - H (B _ - )us yl i BxlW2
(3.18)

Thus with u as above

N A 2

TK = c c (Byl_ _ )2p_ 1 Bxl_2 _ 0 (3.19)

As mentioned above, the damping available from this passive effect

is quite small; in fact, using a circular coil of copper wire with an

assumed temperature of 20°C., it has been shown that the lower limit on

the damping time constant is approximately one day [Ref. 3-2]. This

limiting case assumes that the "vehicle" is made up completely of the

coil; additions to this somewhat impractical vehicle increase the

vehicle inertias without adding to the damping capability and, there-

fore, lengthen the time constant.

Although this passive technique is impractical, we can consider an

active damping law using as a rate error function

OR = Byl_l - Bxl_2 = Byb_°x - B xb y
(3.20)

Clearly, in the absence of any other torque (e.g. position control), the

kinetic energy will be reduced except at the times when OR is zero.

Intuitively, this will eventually bring _i and w 2 to zero, which is

the desired state if the (XR' YR' ZR) coordinate frame is inertially

stationary.

It is of interest to note that with this damping law (in the absence

of all other torques) angular momentum is not conserved because, although

w I and w2 are reduced to zero, the component of angular velocity

along the z I axis is constant. In contrast, with a passive mechanical

damper there are no external torques on the vehicle and the total

angular momentum of the vehicle (including the damper) is conserved;
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reduction of e I and _2 to zero increases the component of angular

velocity along the z 1 axis, and the terminal state is reached with the

vehicle in pure spin about its axis of maximum inertia (here the z b

axis), which corresponds to the condition of minimum total kinetic energy.

It is for this reason that spinning vehicles are generally constrained

to be spun about the axis of maximum inertia. Even though the active

damping law (since it seeks the condition of minimum transverse kinetic

energy) imposes no such constraint, there will usually be a certain amount

of internal energy dissipation in any vehicle (e.g., due to flexing of

external antennae). With this in mind, this study will assume I > I = I
z x y

where z b is the spin axis. In this case the inertia parameter k is

always between zero and unity.

C. CONTROL LAW SUMMARY

To summarize, the control to be considered is

u = _(o)

where

o = o + KR_ RP

and

p BxlC23, BylCl3

o R = BylW 1 - BxlW2

We have yet to assure that this control will be stable or if it is

stable, that it will give acceptable performance, or, granting these two

tests are satisfied, that this control can be mechanized in a reasonable

fashion. These questions are the topics of subsequent chapters.
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IV. STABILITY ANALYSES

The usual approach to stability analysis of spacecraft attitude

control systems is, first, to study stability for small errors by

linearization and the classical techniques applicable to linear station-

ary systems (or low-order stationary systems with contactor control),

and then to study stability for large errors by analog simulation. This

technique is generally acceptable; however, the scope of the analog

study must be sufficient to give a high level of confidence in acquisi-

tion (that is, convergence from large initial attitude errors and

angular velocities).

An alternate approach to the problem is via the second method of

Lyapunov [Refs. 4-1, 4-2]. By finding an "energy-like" function (a

positive definite function of the state variables) which can be shown

never to increase along any solution to the system of differential

equations, stability can be verified; by showing that this function,

V, goes to zero as t _ _, asymptotic stability can be concluded.

The difficulty with this powerful method lies in finding a suitable

Lyapunov function, V.

Previous application of Lyapunov's second method to attitude control

systems has been limited to single axis (rotation about only one axis of

the vehicle) cases or to problems in which the motion of the vehicle is

unrestricted but the control is constrained (e.g., control of a fully

stabilized vehicle using proportional gas jets as opposed to the more

realistic case of contactor control [Ref. 4-3]).

The system of equations dealt with in this discussion is nonstationary;

thus, even the small-error linearized equations are not amenable to

explicit solution. It is natural to attempt to apply the second method

of Lyapunov to such a problem. Fortunately, this approach can be readily

$

A basic familiarity with the fundamental concepts and theorems of

the second method of Lyapunov is assumed; thus, terms such as stability

and asymptotic stability are presented without explanation. For

reference, certain basic definitions and theorems are summarized in

Appendix C.
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applied, using two theorems of Krasovskii, and will yield definite

information regarding _he theoretical feasibility of magnetic control

for spinning vehicles, and the "amount" of damping required, as

specified by the damping gain, K R.

A. THE APPROACH

The second method of Lyapunov requires the exhibition of a positive-

definite function of the system state variables whose time derivative,

evaluated along the trajectories of the system, is a negative definite

(or negative semidefinite) function of the state variables. The basic

theorems (Appendix C) allow the conclusion of asymptotic stability with

negative definite, but only of stability with V negative semidefinite.

However, there are results which will allow the conclusion of asymptotic

stability in the latter case, as well, by consideration of the type of

motion which can occur with V equal to zero. The most general of

these results are summarized by two theorems of Krasovskii [Ref. 4-4];

both relate to a system defined in the following manner.

The system is described for all t > t by the vector ordinary
-- o

differential equation

where the component functions

x = f(x, t) (4.1)

f.(_, t) of _(_, t)
1

periodic functions of time with period T, or have no explicit time

dependence. It is further assumed that these functions are defined and

continuous on the open region

are either explicit

_z = {(x, t): 1)xI)< z, - _o<__t <__oo} (4._.)

with Z constant but not necessarily finite, and that the functions

f. satisfy a Lipschitz condition with respect to each of the components
1

of x in every region IIxll < 2 < 2. The theorems to be used are:
U
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Stability Theorem (Th. 14.1 of Ref. 4-4)

Suppose the Eqs. (4.1) enjoy the properties that:

i. There exists a function V(x, t) which is periodic in time with

period T, 9r does not depend explicitly on time;

is positive definite;

admits an infinitely small upper bound in the region

2. V(x, t)

3. v(x, t)

4. sup(V in the region Nx]l __ Zo, 0 __ t < T) < inf(V for ]]xl] = _),

where _ < _ < _ :o

5. _<0 in _;

6. The set _ of points at which the derivative V is zero contains

no nontrivial half trajectory

_(t; x , t ) (t < t < _)
0 0 0 --

of the system (4.1).

Under these conditions, the null solution x = 0 is asymptotically

stable and the region l]xN < Z lies in the region of attraction of
-- _ 0

the point x = O.

Instability Theorem (Th. 15.1 of Ref. 4-4)

Let _ < _ . Suppose that there exists a function W(x, t) which

is periodic in time or does not depend explicitly on the time, such

that

i. W is defined in the region _Z;

2. W admits an infinitely small upper bound in this region

3. W > 0 in the region

4. The set of points

half trajectory

_Z along a trajectory of (4.1);

at which W is zero contains no nontrivial

_(t; x , t ) (t < t < o0)
O O O --

of the system (4.1).

Suppose further that in every region of the point x = 0 there

is a point x such that for arbitrary t > 0 we have W(_ , t ) > O.
0 0 -- 0 0

Then the null solution x = 0 is unstable, and the trajectories

_(t', x--O, to ) for which W(%, to ) > 0 leave the region II_II < _ as

the time increases.
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Aside from the discovery of a suitable Lyapunov function, the greatest

difficulty in applying these theorems is that of showing that the sub-

space M contains no nontrivial solution of the system of differential

equations. In Ref. 4-4, it is suggested that if Z is a surface

defined by the scalar function

T(x, t) = 0 (4.3)

the condition on _ will always be satisfied if the inequality

_=_ .¥+_
x _¢0 (4.4)

holds on the surface (4.3) in the region Ilxl[ < _. This inequality is

sufficient, because T is assured to be nonzero whenever T is equal

to zero, but is certainly not necessary.

A more useful approach, at least in the present study, is to attempt

a general solution to the system differential equations under the con-

straint that V is zero, and then to show that these solutions are

inconsistent with V remaining zero for all time. This technique,

which deals with a condition which is necessary as well as sufficient

for the nonexistence of nontrivial solutions on the set Z, will (when

it can be applied) yield more definitive results. For the system

equations and Lyapunov functions considered here (for both the simplified

and exact equations of motion), V = 0 will occur when the control is

zero. Thus, the equations to be solved will be stationary and, as will

be seen, can be solved.

In the development to follow, four distinct cases will be solved,

considering the simplified and exact equations of motion each with two

magnetic field models, the untilted dipole and the tilted dipole. The

most rigorous model is, of course, the exact equations of motion com-

bined with the tilted dipole model of the magnetic field. However,

consideration of the simpler models will yield valuable insight.

A word must be said about the magnetic field models developed in

Appendix A. The untilted dipole model, which assumes coincidence of

the magnetic dipole with the spin axis of the earth, yields magnetic
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field components in the (Xn' Yn' z ) coordinate frame which aren

periodic at twice orbital rate. With the tilted magnetic dipole model,

B , B and B are, in general, almost periodic functions of
xn yn zn

and 2_ -w , wheretime, containing the frequencies 2_0o, _e' 2_o+_e o e

is the orbital rate and _ is the spin rate of the earth.* In
o e

this general case, the theorems of Krasovskii are not applicable.

However, if we restrict our attention to those circular orbits for which

the ratio of _ to w is a rational number, the coefficients will
o e

be periodic, and the theorems can be applied. This set of orbits is a

set dense in the set of all possible circular orbits; this means that

given any circular orbit we can, by changing its altitude by an arbi-

trarily small amount, transfer to another orbit such that _ /_ is
o e

rational. Intuitively, the_ it is conjectured that if stability can be

demonstrated for these "rational" orbits, the system will be stable in

"irrational" orbits as well.

The alternative to this conjecture would be the extension of the

theorems of Krasovskii to the case of almost periodic coefficients. The

present proof would not suffice, nor does it appear that it can be

readily extended to the more general case. Indeed, although it would

appear intuitively that periodic and almost periodic systems are similar,

there is no special stability theory for the latter systems similar to

that which has been developed for the former. For example, for systems

with periodic coefficients (asymptotic) stability implies uniform

(asymptotic) stability; but, according to Hahn [Ref. 4,1], this relation-

ship has been neither proved nor disproved for equations with almost

periodic coefficients.

In the analyses which follow, there is a stable equilibrium (for

example, h = h = O, h = +i) as well as an unstable equilibrium
x y z

(h = -I in this case). V can remain zero on this trivial solution,
z

as well as at the origin; however, eventually a perturbation would

As mentioned in Chapter II, the (Xn, Yn' z ) frame is assumed

inertially fixed by neglecting nodal regression. Also (XR' YR" ZR)

will be assumed fixed in inertial space--that is a = _. = _ = O.
' x Y z
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drive the system away from the unstable equilibrium. This case will

be ignored.

In summary, the procedure by which stability will be analyzed is:

I. Find a Lyapunov function satisfying the requirements of the

stability theorem. In this study, the. Lyapunov functions used will

have no explicit time dependence and V = 0 will correspond to _ = 0;

that is, no control.

2. Solve the uncontrolled equations of motion without small error

assumptions.

3. Show that none of these solutions (other than the trivial solution

= 0) is consistent with the assumption that _ = 0, thereby showing

that no nontrivial solutions can remain for all time in the set of

points _ given by V(x, t) = 0.

B. STABILITY OF THE SIMPLIFIED MODEL

x,

For the simplified equations of motion (2.25), the state vector,

is

lhxlx = hy

-h

(4.5)

so that x = 0 corresponds to the desired terminal state h = h = O,
x y

h = 1. Consider as a Lyapunov function one-half of the square of the
z

Euclidean norm of x:

Since

v = + + (i - hz) J

Y

is a unit vector

(4.6)

h 2 + h 2 + h 2 = 1 (4.7)
x y z

and it is easy to show that

V = 1 - h (4.8)
z
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which is positive definite since [h ] < i, and since h = 1 can
J Z -- Z

occur only if h = h = 0. It is readily shown that V admits to an
x y

infinitely small upper bound because this requires only the existence

of a positive definite continuous function U(x) such that

Iv(x, t)[ <_U(x) (4.9)

In this case, we choose U(x) = V(x).

With the (XR' YR' ZR) axes inertially fixed

simplified equations of motion (2.25) become

h = - (_ × _)u

(_R = 0), the

(4.10)

The rate of change of V along the trajectories is

h z = (ByRh x - BxRhy
(4.11)

With u = u h = _(O h) as defined in Chapter III, we have

= - Oh_(C h) _ 0 (4.12)

Note that V = 0 corresponds to _h = 0.

In this case, solution of the unforced equations is trivial; with

u = 0, h is zero, and the solution is of the form

h = h h = h h = h (4.13)
X XO p y yo ' Z ZO

the initial conditions.

It remains only to investigate the circumstances under which oh

can be zero for solutions of this form. It will be convenient to deal

with this problem in terms of the field components in (Xn' Yn' Zn)

space. Examining Fig. 2-3, we see that (with _' = 0 as in Chapter If)

ByR

- BzR-

cos _ cos 5

= -sin 5

sin _ cos 5
n

COS _ sin 5 -sin

cos 5 0

sin _ sin 5 cos

-Bxn
I

B I
yn ]

LBznJ

(4.14)
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Then, from (3.2),

where

_h can be written

_h = 51Bxn + 52Byn + 53Bzn (4.15)

_i = -h sin 5 - h cos @ cos 5x y

52 = h cos 5 - h cos _ sin 5 (4.16)
x y

5 3 = h sin 0Y

For solutions of the uncontrolled system 51, 52, 53 are constants.

i. Untilted Dipole

The magnetic field of the untilted dipole is (Appendix A)

m I

B
xn

B
yn

B
_ zn_

M
e

2r 3
o

3 sin 25 sin 8.
1

(i - 3 cos 2(z) sin 8.
l

- 2 cos 8.
1

(4.17)

where 5 is the orbit position measured from the ascending line of nodes

(5 = w t+_ ), 8. is the inclination of the orbit, r is the radius
o o 1 o

of the orbit and M is the magnetic dipole moment of the earth. For
e

this magnetic field model

M

_h = - -_(52 sin e i - 2G 3 cos e i
2r

o

+ 351 sin 9. sin 2_ - 3(%2 sin 8. cos 25).1 1

(4.18)

For the solution of (4.13), _h can be identically zero only if the

following conditions are simultaneously satisfied:

52 sin 8 i - 2_ 3 cos ei = 0

51 sin 8 i = 0

52 sin 8. = 01
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or, in matrix form:

0 sin 8. -2 cos 85
1 1

sin O. 0 0
1

0 sin 8. 0

-_lq -- O'h

I

iJ52 J=

_53_J _

(4.20)

Since _i+_2+5322 2 = h2xo+h2yo' any solution of (4.20) such that 51 = 52 = 5 3 =0

is the trivial solution. For nontrivial solutions to exist the deter-

minant of the coefficient matrix (which is -2 cos @. sin 2 @.) must be
1 1

zero, which implies that the system must be asymptotically stable in-the-

large (ASIL) unless 8 i = 0 ° or 8. = 90 ° . For 8. = O, the existence
1 1

of a nontrivial solution such that V = 0 requires only that 53 = O,

a condition which is satisfied whenever h = 0 (or for any value of
Y

h if @ = 0). Examining the case 8 = 90 ° we find that it is
Y i '

necessary that 51 = 52 = O. This condition is satisfied if _ = 90 °

and h = O.
x

It is concluded, therefore, that the system is ASIL unless 8. = 0
1

or O. = 90 ° and ¢ = 90 ° The first case is, of course, that of a1

vehicle in an equatorial orbit, while the latter corresponds to a

vehicle in a polar orbit with the desired spin-axis orientation in the

orbit plane.

2. Tilted Dipole

B
xn

The magnetic field of the tilted dipole is

M

2r3e [(d I - d 3) sin _ + 3d I sin (2_ + _) + 3d 3 sin (25 - _)

o

+ 3d 5 sin 2_]

M

By n = - e-S--2r3 [(d 1 + d 3) cos _ - 3d 1 cos (2Oc + _) - 3d 3 cos (2C_ - _)

o

+ d 5 - 3d 5 cos 25]

M
B = e

zn 2r 3
o

(d 7 + d 8 cos _) (4.21)
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where

2 1

d I = sin 6 sin _ 8 i

21

d 3 = - sin 6 cos _ 8 i

d 5 = COS 6 sin e.1

d 7 = - 2 cos 6 cos e.1

and

d 8 = - 2 sin £ sin @.1

_=_ +n+_ (_=_)
e e

6 _ ii deg

_ 20 deg .

For this magnetic field model, gh along solutions of the uncontrolled

equations is somewhat more complex:

a h - e in 6 sin _ + 3 sin 6 sin _ e i sin (2_ + _)
2r 3 1

0

- 3 sin • cos 8. sin (2_ - _) + 3 cos 6 sin 8. sin
1 1

I 1+ C_2 - sin • cos 8.1 cos _ - 3 sin • sin 2 _ 8 i cos (2(2 + _)

2
cos (2C_ - la) + cos • sin e. - 3 cos • sin e cos+ 3 sin • cos ei i1

+ C_31-2 cos • cos e.l -2 sin 6 sin @i cos _; _ (4.22)

Again we exclude _i = _2 = 53 = O, since this is the trivial solution,

and search for conditions under which dh can be zero with the 5.i

constant but not all equal to zero. The synchronous cases
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2_ = _ ) will be omitted for convenience; in any event,(CUO = We' o e

the lowest altitude where one of these cases occurs is in excess of

19,000 nautical miles, and at these altitudes the magnetic field dipole

models are undoubtedly invalidated by the effects of the solar wind, etc.

(Appendix A).

The coefficients in _h at the various frequencies can be

summarized as follows:

constant:

5 2 cos e sin 0 i - 2_ 3 cos c cos 0 i

o

3_ 1 cos e sin ei, - 3_ 2 cos c sin 8.
1

2bJ -I.. Od :
0 e

1
3_ 1 sin c sin 2 _ Oi;

2 1

- 352 sin E sin _ 8.1

2td -- CO :
0 e

2

-.3_ I sin e cos O.z;

2 1

3_ 2 sin c cos _ O i

0o •
e

_i sin E; - 5 2 sin c cos O. - 2_ 3 sin c sin O.1 1

where all of these coefficients must be zero if o h is to be zero for

all time. Examining the coefficients at frequencies 2_o, 2_ +_o e'

and 2_ -_e' it is readily deduced that 51 = 52 = 0 for o h = 0o

Under these circumstances, examination of the remaining constant and

e coefficients shows that 53 must be zero as well. Thus, _h can

be zero only for the trivial solution of the uncontrolled equations.

We conclude that the system is ASIL for all values of _, 8, and _..
I
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C. STABILITY OF THE EXACT MODEL

As might be suspected, demonstration of stability for the exact

equations of motion is more involved. With _ = _ : _ : 0 the
x y z

exact equations of motion are, from Chapter II:

co = - kco co - (i + k)cosB b u
x s y y

co = k_o co + (1 + k)COsBxbUy s x

a13 = a23t_ s - a33(_y

a23 = a33¢o x - al3c_ s

a33 = al3_y - a23_x

al2 = a22_s - a32cdy

(4.23)

a22 = a32cox - al2_s

a32 = al2COy - a22_x

all = a21_o s - a,31COy

a21 : a31co x - allCO s

The control is

a31 = all_y - a21_x

where

u = rl(cr) (4.24)

(_ = Bxb(a23 - KRt_y) - Byb(al3 - KRU) x)
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The desired steady state is a33 = 1

condition a31 = a32 = a13 = a32 = O.

state vector in this case

and _ = _ = O. With this
x y

It is natural to consider as a

m

L_
X

W
Y

X = a13 (4.25)

a23

1-a33

because these variables are sufficient to describe the desired equilibrium

and the control. Furthermore, with this state vector only the first

five differential equations of (4.23) need be considered explicitly.

The Lyapunov function to be tested is

1 _( - KR_x)2 (a23 _ KR%)2V = _ a13 +

a33)2)"
(4.26)

For u = _(G):

= -KR(I + k)_OsOrl(o) .
(4.27)

This Lyapunov function is positive definite if and only if K R > 1/(l+k)_ s.

Thus, if we can show that there are no nontrivial solutions such that

V(_, t) = 0 for all time, the amount of rate gain required for asymptotic

stability will be established because, letting W = -V in the instability

theorem, all necessary conditions for instability will be satisfied for

KR < i/(l+k)_ . Of course, for K R equal to this critical value thes

system will be stable but not asymptotically stable. As an infinitely

small upper bound for both V and W consider the function U(x)

given by replacing the coefficient KR(l+k)t0s-1 in V by its absolute

value.

49



As before, the uncontrolled system equations must be solved as the

next step. It is necessary to solve the complete set of eleven equations

because the expression of Bxb and By b in terms of _, 5, Bxn, By n,

and B requires knowledge of all, a12, a21, and a22 as well as
zn

a13 and a23.

Define Euler angles 8', _', and _' as in Fig. 4-1. Solution

z b
Yb

Yi

FIG. 4-1. DEFINITION OF THE EULER ANGLES _', e' AND _'.

for the variation of 8' _' _' _x' and _ under torque-free
_ , y

conditions is a classical problem (see, for example, Ref. 4-5). The

general solution is:

= - a sin (k_ t - _)
X S

Y
a cos (k_ t - _/o )

$

O

(4.28)

_/' = - k_0 t + _/'
S 0

0

_0



where

2 2a = +
xo yo

a

1 - (Hs/H) 2

= _/a 2 + (1 + k)2_2s

H2 = I2(co 2 + _o2) + H2
x x y s

(4.29)

From these results, the time variation of the

mined. For convenience, define

X b =

I
I

i exb

m

ere
ey b , •

ez b

Then expression (2.3) can be written

a° °

1j
! s can be deter-

(4.30)

and

X b = AX R (4.31)

Xi = BX R (4.32)

where (xi' Yi' zi) is an inertial coordinate frame (Fig. 4-i) defined

so that e . corresponds to the direction of the total angular momentum
zl

vector. The matrix B is constant. Continuing, we define a matrix D

by

X b = DX.1 (4.33)

where the elements of

Then

D can be derived by examination of Fig. 4-1.

A-DB . (4.34)



Furthermore:

so that

Hence

A(0) = D(O)B (4.35)

B = DT(0)A(0)

Letting, for example, the notation X8,

axis through an angle e':

m

A(t) = [D(t)D'(0)] A(0) = G(t)A(0) (4.36)

denote a rotation about an x

D = Z_/,Xe,Z_, . (4.37)

Then

G(t)= ) eo %

and, choosing _' = 0 (thus specifying the x. and Yi axes):o 1

A(t) = D(t)_Oo_oA(O_

(4.38)

(4.39)

Denote the term of (4.39) in brackets as S ° , a constant orthogonal

matrix which can be chosen arbitrarily to give arbitrary initial condi-

tions. A(0) gives the initial attitude error, and the terms concerning

e o, and _o' give the initial location of the total momentum vector in

vehicle coordinates. Notice that since Hzb = H cos e' = Hs, el as

defined here is always in the range [0, 90 °) and is never, it is

important to note, equal to 90 °

Then, in summary:

A(t) = D(t)S ° (4.40)
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where

21
dll = cos _ e'0 cos (_' + ¢') + sin 2 1 8' cos (_' - _')o

= 1 e' sin (_' - ¢')2 1 8' sin (_' + _') -sinR _ od12 cos _ o

d13 = sin 8o' sin #'

1
d21 = -cos2 218'o sin (_' + ¢') - sin 2 _ 8'o sin (_' - _')

d22 = cos2 21 e'o cos (#' + ¢,) - sin 2 210'o cos ($' - ¢')

d23 = sin 8' cos _'o

d31 = sin 8' sin @'0

cos _d32 = -sin 8°

and

d33 " ,= COS e 0

$'(t) = -k_Ost + $o'

¢'(t) 2 22 t
= + (i + k) s

e, = cos -I (H /H)
o S

= a sin $'
x

= a cos _!
Y

Hxb(O) = H sin 8'o sin _o'

H (0) =
yb

H sin e' cos '
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As an additional preliminary step, o can be expressed in terms of

Bxn, By n, Bzn, _, 5, a31, a32, a31, a32, and a33. First,

using the direction cosine relationships presented in Chapter II, it

can be shown that

• ° •

= ByRa31 - BxRa32 - KR(BxRa31 + ByRa32 + BzRa33).
(4.41)

Then, using the transformation (4.14):

= Bxn[V21a31 - Vlla32 - KR(Vlla31 + v21a32 + v31a33)]

+ Byn[V22a31 - v12a32 - KR(Vl2a31 + v22a32 + v32a33)]

+ Bzn[V23a31 - vl3a32 - KR(Vl3a31 + v23a32 + v33a33)]
(4.42)

where

Vll v12

v21 v22

v31 v32

v13

v23

v33

cos _ cos 5

= -sin 5

sin @ cos 5
w

cos 0 sin 5 -sin 0

cos 5 0

sin _ sin 5 COS

Utilizing the result (4.40) we can write an expression for q along a

general uncontrolled solution•

= Bxn(Pl I sin 0' + PI2 cos 0' + P13 )

+ Byn(P21 sin @' + P22 cos 0' + P23 )

+ Bzn(P31 sin 0' + P32 cos 0' + P33 ) (4.43)

where
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Pll (v21sll VllSl2) sin e' KRa + += - o - (VllS21 v21s22 v31s23)

PI2 = (VllS22 - v21s21) sin 8' - KRa + +o (VllSll v21s12 v31s13)

PI3 = (v21s31 - VllS32) cos 8'O

P21 = (v22s11 - v12s12) sin 8' - KRa + + )o (v12s21 v22s22 v32s23

P22 (v12s22 v22s21) sin 8' KRa + += - o - (Vl2Sll v22s12 v32s13)

!

P23 (v22s31 -v12s32) cos 8 0

P31 = (v23s11 - v13s12) sin 8 o' - KRa(v13s21 + v23s22 + v33s23)

P32 = (v13s22 - v23s21) sin 8' -o KRa(Vl3Sll + v23s12 + v33s13)

P33 = (v23s31 - v13s32) cos 8'
O [v23 _ O)

It is convenient that, because it can be expressed in terms of a31 ,

a32' and a33 , _ along the unforced solution isa32, independent

of the variable 4'

As before, we will examine the existence of nontrivial solutions

such that _ is zero for all time. One requirement of the trivial

solution is that a = 0 so that _ = _ = 0 for all t. The other
x y

requirement is that a33 = i for all time. From (4.40)

a33 = d31s13 + d32s23 + d33s33

and, with a = 0, sin 8' = 0
O

stances

and cos 8' = i.
0

Under these circum-

a33 = s33 •
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Therefore, the equilibrium will be completely specified by

a = 0, S33 = i
(4.44)

and because S ° is an orthogonal matrix

s13 = s23 = s31 = s32 = 0
(4.45)

at the equilibrium.

It is clear from (4.43), (4.44), and (4.45), that the equilibrium

solution implies that all Pij are equal to zero. But, does the nullity

of all Pij imply that the conditions of (4.44) and (4.45) must be

satisfied; that is to say, are all Pij equal to zero only for the

trivial solution? The answer is yes, for those values of KR which

are of interest, as shown by the following argument.

It will be convenient to consider three new functions:

2 2 2

F1 = Pll + P21 + P31

2 2 2 (4.46)
F2 = Pl2 + P22 + P32

2 2 2
F3 = P13 + P23 + P33 "

Expansion using (4.43) and application of the identities of (2.15)--

which apply to any orthogonal transformation matrix--to the matrix S °

"yields :

= 2 2 2 ,
F 1 [ (1 - s13) - 2KROJS33 + KROJ ] sin 2 eo

2 K2_02] sin 2 e'F2 = [(i - s23) - 2KRam33 + o
(4.47)

= 2 ,
F3 (i - s33) cos 2 e °
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where

a = _ sin 8' . (4.48)
O

Now, if all Pij are zero, then F1 = F 2 = F 3 = O. F3 = 0 implies

that s33 = +l (the case s33 = -i relates to the unstable equilibrium,

and will be omitted, as discussed in Sec. A of this chapter), because

0 < 8' < 90 °
-- 0

Thus if all

equivalently

either

as noted in the discussion following expression (4.39).

Pij = 0, s33 = 1 and it remains only to show that a (or

e_) is equal to zero. For s33 = 1, F 1 = F 2 = 0 implies

or

(i) sln e' = 0
O

(ii) KR_ - 1 = 0 .

Under what circumstances can the latter condition hold? This condition

can be put in the form:

(ii) ' K R = a2
+ (i + k)2_ 2

s

(4.49)

Consider two cases. First, if KR is greater than its critical value

1 1

KR > >-- _/a (4.50)
(I + k)_ 2 2 2

s + (i + k) oo
S

Therefore, (ii) cannot be satisfied so that sin 8' = 0 as required for
o

the equilibrium. Second, consider K R less than its critical value.

For satisfaction of (4.49)

1z 1

_/a = KR<
2 + (i + k)2J (i + k)_0s

S

(4.51)
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and the equality will hold for some positive (nonzero) value of a. At

first glance, this would appear to negate the possibility of showing

instability of the origin. But this is not the case. If we restrict

our attention (for proof of instability) to a region, %, of the origin

II_[I< a where aO is the value of a satisfying thedefined by
o'

equality of (4.51) for the particular value of K R in question, we

have shown that within this region, no nontrivial solutions exist such

that V is equal to zero for all time. There is, of course, no need

to consider the entire state space to demonstrate instability of the

origin.

To summarize, if we can show that expression (4.43) being zero for

all time requires that all Pij are equal to zero, we can conclude that

the origin is asymptotically stable in-the-large for K R > 1/(l+k)_ s

and that the origin is unstable for K R < 1/(l+k)_ .s

i. Untilted Dipole

The untilted dipole model of the earth's magnetic field is given

in (4.17). Expanding G as in (4.43):

M

e f sin 8i 2P33 cos e. + [ sin e ) sin 2_ff = - -- _P23 - 1 "3P13
2r 3 1

o

- (3P23 sin @i ) cos 2C_ + (P21 sin @'i - 2P31 cos 8i )
sin g'

+ (P22 sin _'i - 2P32 cos @i ) cos @'

3

+ 2 [(Pll - P22 ) cos (0' - 2_) - (Pll + P22 ) cos (0' + 2(2)

- (PI2 + P21 ) sin (_' - 2_)

+ (PI2 - P21 ) sin (g' + 2CZ) 3 sin @')l
(4.52)

_a2+(l+k)2 2where _' = _ = > (l+k)_ , and (2 = co . For spin-
s -- S 0

stabilized vehicles the spin speed is typically two or more orders of
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magnitude greater than the orbit rate. Thus, if d is to be zero for

all t, each of the coefficients of (4.52) must be zero. These coef-

ficients are:

constant:

P23 sin 8 i - 2P33 cos e i

2oo "
o

P13 sin ei; P23 sin 8.1

to:
D

P21 sin e I. - 2p31 cos 8.; P22sin 8 i - 2P32 cos 8 i

_-2_ :
o

(Pll - P22 ) sin ei; (P12 + P21 ) sin 8.1

w+ 2_ :
o

(Pll + P22 ) sin 8i; (PI2 - P21 ) sin ei

< 90 ° so that sin 8 and cos 8i areConsider first the case 0 < 8i i

nonzero. It is trivial to show that all Pij are zero and that the

conclusion of ASIL for KR > 1/(l+k)_ and instability for K R < i/(l+k)_s s

follows.

The remaining two cases are more involved; for 8 i = 0, suf-

ficient conditions for _ to be zero for all t are P31 = P32 = P33 = 0.

From (4.43) we see that these conditions can be satisfied by choosing

' = 0) and, to make = 0 either = 0 (which
a = 0 (hence 8 ° P33 ' v13

will occur if @ is zero) or, more generally, s32 = O. This does not

constrain s33 to be unity so that for 8 i = O, the system is not

asymptotically stable. Therefore, the vehicle can come to rest with

x = _y = 0 (no wobble), a32 = 0 and a31 , a33 constant. This

corresponds to the spin axis being fixed in the reference coordinate

frame with a steady attitude error.
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If ei = 90 °, _ will be zero for all time if Pll = PI2 = PI3

= P21 = P22 = P23 = 0 with no restriction upon P31' P32' and P33"

' _ 0, = = 0 implies:
Since cos 8o PI3 P23

Ii 1

22

(4.53)

This will be satisfied if:

(i) VllV22 - v12v21 d O, s31 = s32 = 0

(ii) VllV22 - v12v21 = O, s31 and s32 must be determined.

Assume that condition (i) holds; then the only question is whether

(and a) can be nonzero. Define two new functions

2 2 2

G1 = Pll + PI2 + PI3

2 2 2

G2 = P21 + P22 + P23

S t
O

(4.54)

Each of these functions is zero for 8 i = 90 ° and g = O. Expanding

these functions with s31 = s32 = s13 = s23 = i-s33 = 0, they become

KR a) 2 2= , _ (v121 + v21)G 1 (sin 8o

= , - KRa)2(v22 + v22)G 2 (sin 80

(4.55)

Thus either

Vll= v12 = v21 = v22 = 0
(4.56)

or a = _ sin 8' = 0. But (4.56) violates the assumed condition (i)
O

above, so G = 0 with e i = 90 ° and condition (i) requires the trivial

solution and the system is ASIL. If condition (ii) pertains, _ must
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be 90 ° , from the definition of the v.. following expression (4.42).
ij

This immediately yields Vll= v12 = v23 = v33 = 0, v13 = -i,

v21 = -sin 5, v22 = cos 5, v31 = cos 5, v32 = sin 5. Then (4.53)

requires

- 531 sin 5 = 0

(4.57)

S31 cos 5 = 0

and s31 = 0 with s32 arbitrary will satisfy (4.57). Note that if we

' = 0, = O, and the vij values above, weassume a = _ sin OO s31

have, from (4.43),

Pll = PI2 = P21 = P22 = P31 = P32 = 0

by a = O, and

P13 = P23 = 0

from Vll= v12 = s31 = 0. This satisfies the necessary conditions

for _ = 0 for all time (with 8. = 90 °) for a solution which is not
1

the equilibrium solution; that is, the solution _ = _ = O, = 0
2 2 * x y s31 '

s32 arbitrary and s33 = i-s32.

It is concluded that, as in the case of the simplified equations

of motion with the untilted dipole magnetic field model, the system is

ASIL (if K R > i/(l+k)_ ) unless 8 = 0 ° or 8 = 90 ° and _ = 90 °s i i _ "

If K R is less than the critical value, we replace '_SIL" by "unstable"

in the above statement.

* This corresponds to the vehicle spinning without wobble with _81 _ 0

and a23 , a33 arbitrary and constant. Thus, the spin axis is xlxea

in (XR, YR' z R) coordinates with a steady attitude error.
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2. Tilted Dipole

The magnetic model of the tilted dipole is given in (4.21).

this model, g, along unforced solutions of the system, becomes

With

M
e

= - --(P23d52r3 + P33d7 + Pl3(d I - d 3) sin_ + [P23(dl + d 3) + P33d8 ] cos_

o

+ 3P13d I sin(2_ + _) + 3P13d 3 sin(2_ - _) + 3P13d 5 sin 2a

- 3P23d I cos(2_ + _) - 3P23d 3 cos'(2_ - _) - 3P23d 5 cos 2a

+ (P21d5 + P31d7 ) sin@' + (P22d5 + P32d7 ) cos_'

1

+ _ [Pll(dl - d 3) + P22(dl + d 3) + P32d8 ] cos(_ - @')

- _2 [Pll(dl - d3) - P22(dl + d3) - P32d8 ] cos(_ + _')

1

+ _ [Pl2(dl - d 3) + P21(dl + d 3) + P31d8 ] sin(_ + _')

1

+ _ [Pl2(dl - d 3) - P21(dl + d 3) - P31d8 ] sin(_ - 0')

3 _, 3
+ 2 (Pll + P22)dl cos(2_ + _ - ) - 2 (Pll - P22)dl cos(2a + _ + @')

3 3

+ 2 (PI2 - P21)dl sin(2_ + _ + _') + _ (PI2 + P21)dl sin(2£_ + _ - _')

3 _, 3
+ 2 (Pll - P22)d3 cos(2c_ - _ - ) - 2 (Pll + P22)d3 cos(2_ - _ + _')

3 _,
+ 23 (PI2 - P21)d 3 sin(2C_ - _ + _') + _ (PI2 + P21)d3 sin(2_ - _ - )

3 3

+ 2 (Pll - P22)d5 cos(2C_ - @') - _ (Pll + P22)d5 cos(2_ + _')

3 3 _,
+ 2 (P12 - P21)d5 sin(2_ + _') + _ (P12 + P21)d5 sin(2a - ))"

(4.58)
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With the assumption of a nonsynchronous orbit (_ > w ) and _ >> _ ,
o e s o

this yields 27 conditions to be satisfied by the nine Pii coefficients

so that _ = 0 for all time. It can be shown that simultaneous satis-

faction of these 27 conditions requires that each PiJ is zero, so that

the system is asymptotically stable in-the-large for all 0., _ and 5,
1

if K R > 1/(i+k)_s. If K K is less than this critical value, the system

is unstable. This conclusion, as mentioned in Sec. A of this chapter,

applies rigorousIy only for orbits such that _ /w is a rational number.
o e

D. SUMMARY OF STABILITY RESULTS

In the most realistic case considered, that of the tilted dipole

magnetic field model, in-the-large asymptotic stability has been demon-

strated, for K R > i/(l+k)_ in orbits such that _ /_ is rational,s' o e

with any value of 8i, _ and 5. Thus, this system has been shown to

be capable of effecting acquisition for arbitrarily large initial attitude

errors (up to 180 deg) and arbitrarily large initial transverse angular

velocities. Moreover, the relationship K R > i/(l+k)_ has been showns

to be both necessary and sufficient for asymptotic stability in-the-large.

The stability properties of this nonlinear, time-varying system have been

completely determined.

By demonstrating ASIL for this particular control law, the theoretical

feasibility of magnetic control of any axially symmetric satellite in any

circular earth orbit (rigorously, _ /_ must be rational), with any
o e

desired spin-axis direction, has been demonstrated. There is no assurance

from this stability analysis that the system will be practically feasible;

e.g., convergence times for reasonable torquing coils may be on the order

of weeks. As will be demonstrated, this system is, in fact, useful in a

significant number of applications.

This stability analysis has been performed for a very general control

function (Fig. 3-1); the basic limitations are _(_) continuous (imposed

by continuity of the f.(x, t) as required by the stability theorems),
1

_(0) = 0 and _(G) > 0 for G _ O. This explicitly excludes the signum

function. This limitation poses no difficulty because the signum func-

tion can be approached arbitrarily closely by a continuous function.
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Moreover, since a current is being controlled, rather than the rate of

mass expulsion, there is no physical reason to exclude proportional

control [_(_) = K0], or saturating proportional control, or any other

control characteristic which is found to be desirable. It may, in fact,

be desirable to exclude signum control to avoid the possibility of

chatter.

The major limitations of this stability analysis are the assumptions

of a circular orbit and a dipole magnetic field model. However, even

without these constraints the Lyapunov function developed here is suf-

ficient to demonstrate stability (since V _ 0 regardless of the varia-

tion of BxR and B yR). We can conjecture (with some confidence) that

asymptotic stability in-the-large exists for elliptical orbits and the

exact environmental magnetic field. The obvious cases where asymptotic

stability will not occur are those in which either BxR or By R is

zero for all time (e.g., the untilted dipole model with e. = 0, or
1

8.1 = 0 = 90 ° , as shown above), or where BxR(t) = CIByR(t) with C 1

a constant. In either instance, considering the simplified equations of

motion, _h can remain zero for constant values of h and h , withx y
at least one of these variables nonzero. It is, of course, extremely

unlikely that the environmental magnetic field will, for any mission,

satisfy either of these conditions.
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V. ESTIMATES OF SYST_ RESPONSE

In this chapter expressions are derived which, while not giving an

exact determination of system response, will yield estimates which are

very useful for design purposes. The basis of these estimates is the

averagin E of the periodic coefficients in the differential equations over

a period and thus deriving equations which are, heuristically, differential

equations of the average motion. These estimates, unsupported, would be

doubtful; however, the estimates derived in this study have been judi-

ciously spot checked by numerical integration of the equations of motion

and found to have sufficient accuracy for design purposes. Using these

results, it is possible to determine quantitatively the effect of various

parameters (e.g., 8i, @, 8, K R) upon system performance.

Figure 5-1 is a comparison of the response of the exact model with

that of the simplified model for a typlcal case with proportional control

(i.e., u = K_, where K is the gain) and an initial pointing error of

135 deg. The solid curves indicate the response of the simplified model

while the circles and crosses are sample points from the response of the

exact model for two damping levels. All three runs exhibit the same

position response initially; however, as time passes, the transverse

angular velocities are excited and the c . begin to show the presence
3j

of terms near spin frequency. With low damping (K R = 10) the difference

between the models is apparent, indicating that the transverse angular

velocities were damped quite slowly; increasing K R by a factor of five

results, for practical purposes, in equivalence of the models. The

increase in damping maintains W 1 and _2 at much lower levels and, in

view of the structural similarity between the simplified and exact momentum

equations (Chapter II), the above results are to be expected.

The data from the above and other computer runs indicates that, with

K R sufficiently large, the solutions hx, hy, and hz ' of the simpli-

fied equations give a good approximation of, respectively, c31, c32,

and c33 , the attitude variables of the exact equations of motion, at

least for large attitude errors. It is reasonable, in order to develop

approximate relationships between the system parameters and the response
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of the (exact) system, to assume that there is "sufficient damping" and

deal with the simplified model in estimating system performance for large

errors, On the other hand, in estimating small-error performance, the

exact equations will be linearized.

Intuitively, a signum control of coil current will be preferred for

rapid convergence; this conclusion will be given support by the optimal

control investigations of the simplified model presented in the next

chapter. However, to avoid chatter near the origin, _(_) will be

assumed to have a small linear region for _ near zero, as shown in

Fig. 5-2. Thus, for the large-error performance estimate a signum con-

trol will be used, with the assumption that the saturation level,
s'

U
o

v -U
o

f
s

FIG. 5-2. THE SATURATING-PROPORTIONAL

CONTROL FUNCTION.

is small enough that the current is essentially full on at all times.

On the other hand, the small-error performance estimate will assume a

linear control; i.e., that _ < _ at all times. Clearly there is an
s

intermediate region where neither approximation is valid, but this

transition case will be neglected.

This chapter, it should be noted, is restricted to the case when the

reference coordinates are inertial and there are no disturbance torques.

The effect of certain of these disturbances will be discussed in a later
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chapter. Furthermore, for simplicity, the untilted dipole magnetic field

model is employed for all performance estimates.

A. LARGE-ERROR PERFORMANCE ESTIMATE

The simplified equations of motion are:

hx = (BzRhy - ByRh z)u

l_y = (BxRh z - BzRhx)U

h z = (ByRh x - BxRhy)U

It will be convenient to define the position of

Fig. 5-3.

(5.1)

in polar form as in

In terms of these polar variables the normalized momentum

z R

\\ I

/ v ,,

YR

FIG. 5-3. POLAR ATTITUDE VARIABLES.

**
components are:

Appendix A includes a discussion of the effect of using the untilted

(rather than the tilted) dipole model.

is restricted to the range [0,_]; the azmuthal angle k is
unrestricted.
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h = sin _ cos
x

h = sin _ sin )_
Y

(5.2)

h = cos _/ .
z

The equations of motion in terms of _ and )_ are

= -(By R cos )_ - BxR sin )_)u

sin _/ = [(By R sin )_ + BxR cos )_) cos _/ - BzR sin _/]u

(5.3)

Let

u = U sgn Uh = U sgn (Bo o yR cos )_ - BxR sin X) (5.4)

With this control

= - UolBy R cos )_- BxR sin )_I (5.5)

If a proportional control is employed, that is, u = K_:

= - K(By R cos _ - BxR sin _)2 sin (5.6)

Notice that (5.5) and (5.6) are complicated by the presence of _ which,

strictly speaking, can be determined only by solving the complete system

of Eqs. (5.3).

It is useful at this point to examine the character of the solutions

of the simplified equations of motion as revealed by analog simulation.

These results are conveniently represented by plots of h vs. h as
y x

in Fig. 5-4. In this representation, the distance from the origin to the

trajectory is sin _ and X is the polar angle (measured counterclock-

wise) from the h axis to the trajectory (Fig. 5-4). Because h is a
x

unit vector, the trajectory must always lie within the unit circle (which

corresponds to an error of 90 deg). There is a certain amount of
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hy h:÷h:.,

FIG. 5-4. TRAJECTORIES IN THE (h , h ) PLANE

FOR 8. = 30 ° , _ = 0 °, 5 = 0 °x Y
1

ambiguity because the sign of h is not shown, so these plots do not
z

show whether _ is in the range [0, 90 ° ] or the range [90 °, 180°].

For convenience, all runs presented here begin with _ = 90 °, and this

value is, of course, never exceeded since _ < 0.

Figures 5-4 through 5-9 show the results of 48 "typical" analog runs

with signum control and U = 58.4 for a vehicle at an altitude of 300
o

nautical miles. Each figure represents a different combination of 8.
1

(the orbital inclination), and _ and 5 (which define the nominal

pointing direction). In each instance, the partial trajectory between

the points Q and _ corresponds to a time increment of approximately

a half orbit (the period of BxR and ByR). At _ and _ , as well

as at a single intermediate point, the trajectory becomes tangent to a

circle centered at the origin. This condition corresponds to h = 0
z

and, therefore, the control changes sign at such points. We see that in

no case does _ ever increase along a trajectory. Since h = cos _,
z

this means h > 0 at all times along every solution --which is theZ --

condition imposed in deriving the control law.
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FIG. 5-5. TRAJECTORIES IN THE (h , h ) PLANE
FOR e. = 30 °, _ = 60 °, 5 = -x90°Y
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hy =I

FIG. 5-6. TRAJECTORIES IN THE (h , h ) PLANE
FOR e. = 60 °, g = 0 °, _ = 0°. x Y
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FIG. 5-7. TRAJECTORIES IN THE (h , h ) PLANE

FOR e. = 60 °, _ = 60 °, 8 = -x90°Y
1

+he -I

hx

FIG. 5-8. TRAJECTORIES IN THE (h , h ) PLANE

FOR e. = 90 °, ¢ = 0 °, 5 = 0 °x Y
1

T2



FIG. 5-9. TRAJECTORIES IN THE (h , h ) PLANE

FOR 8. = 90 °, I_ = 60 °, 5 -- -X90°Y.
1

Sequential examination of Figs. 5-4, 5-6, and 5-8, all of which

correspond to a nominal spin-axis orientation which is normal to the

orbit plane, shows that the distance between Q and _ increases (hence

the speed of response increases) as the orbit becomes more nearly polar.

This is expected because, for 0 = 5 = 0, the term sin 8. can be
1

factored from both BxR and B and hence from _ in (5 3)
yR' " "

For other nominal spin-axis orientations such a factorization is not

possible and, not unexpectedly, the relationship between the speed of

response and the orbital inclination is not clear from examining Figs. 5-5,

5-7, and 5-9 (all of which correspond to _ = 60 °, 5 = - 90°). As a

matter of fact, as is shown later in this chapter, the speed of response

is much more sensitive to the orbital inclination for _ = 0 ° than for

0 = 90 °

As noted earlier, Eqs. (5.5) and (5.6) are complicated by the presence

of k which is, in general, time varying. However, examining Figs. 5-4

through 5-9 we see, in each case, that k, during any half orbit with

sufficiently large, varies only through a small range. This variation
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would be even less for smaller values of U o. As a first approximation,

then, we will assume in (5.5) and (5.6) that _ is constant, but arbi-

trary, over one period of the coefficients.

From this point the 4 Eqs. (5.5) and (5.6) could be solved over a

half orbit starting with 4 = 4 o and k = ko" Then the time variation

of 4 (and _o ) could be used in the [ equation from (5.3) to find a

new starting value for k = kl" The procedure would then be repeated

starting with 4 = 41 and k = k 1. This approach appears to be tedious

and no more useful for design purposes than an exact numerical solution.

A more gross approach yields more useful (if less accurate) results.

First, assuming that all values of k are equally likely (in any case

the initial value of k would generally be unknown), average the right-

hand sides of (5.5) and (5.6) over k. Notice that

IByR cos k - BxR sin k I =JB 2 B2 txR + yR [cos (k + _)1

where 9 is a phase angle which need not be determined. As a second

approximation, average the right-hand sides over one-half orbit. The

result of this is an estimate of the average (in time) variation of 4

on the average (in k). For signum control:

I M

[ _AV 2r 3 %GAv
o

(5.7)

As noted earlier these results assume MKS units. For English units

(i.e., slug-ft 2, lb-ft-sec, amp-ft 2, gauss, ft-lb) the torque is

= 6.86 X 10 -6 M X

-- amp_ft 2 --where M is in , B is in gauss and N is in ft-lb. To use

these units this additional factor must be included on the right-hand side

of (5.7) and (5.8). Uo, in this case, is in units of amp-ft2/ib-ft-sec

while K is in units of amp-ft2/ib-ft-sec per gauss. These units are

used for all numerical computations in this dissertation.
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where

and

GAV = ave _ xR + _yR
a:Z

B
xR

_xR = M /2r 3
e o

B
yR

_yR = M /2r 3
e o

With proportional control the approximate average motion is:

• v1*AV siO,,v
(5.8)

where

FAV = ave (_xR +
2_

As before the untilted dipole model is assumed. From Appendix A:

_xR = [sin 5 + 3 sin (2_ - 5)] cos 0 sin O. + 2 sin ¢ cos 8.1 1

_yR = [cos 5 - 3 cos (2_ - 5)] sin 0.I

(5.9)

Because GAV involves the average of a square root of a periodic function,

it is most easily evaluated (and has been) by numerical techniques.

However, FAV can be written in closed form:

FAg = (i + cos O) + _ sin _ cos 2 sin 2 O.I

+ 2 sin 2 @ cos 20. + 2 sin 0 cos 0 sin O. cos O. sin 5

I i i (5.i0)

Ibid, page 74.
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Figures 5-10 through 5-15 show contours of constant FAV and GAV in

the (@, 5) plane for several values of e.. As will be seen in a later
1

chapter, these curves are very useful for design purposes.

It is important to determine the validity of the estimate of the

response with signum control. For this purpose the equations were solved

by simulation for U = 58.4 and all combinations of the following param-
O

eter values:

8. = 30 ° , 60 °, 90 °
1

= 0 ° 30 ° 60 ° 90 °
, , I

5 = -90 °, -60 °, -30 °, O, 30 ° , 60 ° , 90 °

k(O) = O, 45 °, 90 ° , 135 °, 180 ° , 225 °, 270 °, 315 ° .

(From investigation of Figs. 5-13, 5-14, and 5-15 we see that these

values of _ are 5 are, by symmetry, sufficient to sample the entire

range of these parameters.) For each run the time required to reduce

from 90 ° to i0 ° was recorded. From this data the average rate of change

of _ was computed and from (5.7) an empirical value of GAV was

obtained. These results were then averaged over 5 for each (8., Z)
1

combination and the results plotted in Fig. 5-16 were obtained. Also

plotted in Fig. 5-16 are numerical computations of GAV from the defin-

ing relationship (again these are averaged over 5). Figure 5-16

indicates a close correspondence between the empirical results and the

response estimates, particularly for small values of @. However, as

approaches 90 ° a systematic error is exhibited. Examining the analog

data (for example, Fig. 5-7) it is apparent that as Z approaches 90 °,

the system favors certain values of k for convergence. Moreover, the

rate of convergence for these preferred values of k is apparently

slower than the average (over k) rate of convergence. Thus, the

response estimate is slightly optimistic for the larger values of _.

On the wholej the estimate (5.7) is a good one.
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FIG. 5-16. COMPARISON OF LARGE-ERROR RESPONSE ESTIMATES WITH
EMPIRICAL DATA.
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B. SMALL-ERROR PERFORMANCE ESTIMATE

For estimation of small-error performance the linearized exact

equations of motion will be used. Neglecting all disturbances and

assuming the (XR' YR' ZR) coordinate frame to be inertially stationary,

the linearized equations of motion with proportional control are:

c13 = -_2

c23 = _i

(5.11)

where = (l+k)_o and, as before ,
n s

O = BxlC23 - BylCl3 + KR(ByI_ I - BxlW2 )

For small errors

Bxl = BxR + BzRCl3

By I = By R + BzRC23

(5.12)

because, for a33 = c33 _ i,

C _-_

C can be assumed to be

i 0 c13

0 i c23

-c13 -c23 i
d

(5.13)

The uncontrolled solution to the set of Eqs. (5.11) is of the

general form
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_i = a cos (_t + 8)n

602 = a sin (co t + 8)n

c13 = Xl +L- (5.14)
n

c23 = X2 +-c0
n

The constants a, 8, XI, and X2 are specified by the initial con-

ditions. The character of this motion is shown in Fig. 5-17. Notice

that the phase angle 8 is not important; moreover, because only the

total attitude error is significant, knowledge of _a and a is suf-

ficient to specify the essential properties of the motion.

In the presence of proportional magnetic control with sufficient

damping c01, _2' c13' and c23 will eventually be reduced to zero.

However, since magnetic control results in a rather slow motion of the

spin axis, the controlled response will appear very similar to that

shown in Fig. 5-17 if viewed over a time equivalent to several cycles of

the unforced oscillatory solution. It is reasonable, therefore, (in the

style of Krylov and Bogoliubov [Ref. 5-1]) to regard the forced solution

as being of the form (5.14) where Xl , X2 , a, and 8 are, relative

to the frequency _n' slowly varying parameters. If, under these

assumptions, reasonable estimates can be developed for the variation of

a and sa they can be used for design purposes.

i. Variation of a

Define _ _
= _nt+@" Then e 1 = a cos _ and _2 = a sin _.

Differentiating e 1 and _2:

= a cos _ -a_ sin

_o2 = a sin _ + a_ cos

(5.15)
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_2

trajectory

1

(a) Motion in the (el, _2 ) Plane

c23

trajectory

_2

--'--c13

(b) Motion in the (c13 , c23) Plane

FIG. 5-17. SMALL-ERROR UNFORCED RESPONSE.
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By proper combination of these results

a = cos _ + sin

From (5.11) it follows that

a = - K_ (B cos _ sin _)G
n yl - Bxl "

Employing the form of the solution specified in (5.14),

XI' X2' a and _:
written in terms of

= Bxl )C2 _ a sin - Byl 1 _n

(5.16)

(5.17)

can be

a COS

/ (5.18)

If the foregoing two expressions are combined and expanded, there will

be terms independent of _ as well as those involving sin _, cos _,

sin 2_ and cos 2_. Because we are assuming that a, _1' and X2

are constant over several cycles at the frequency _n' it is reasonable

as a first approximation to neglect all but the terms not involving

(this is the "averaging principle" of Krylov and Bogoliubov [Ref. 5-1]).

This step yields:

• 1 K(KR0% 1)(B21 + B21)aa = - _ (5.19)

Because c13 , c23 , C°l' _2' a, X1 , and X2 are all assumed to be

small, expression of (5.19) in terms of BxR , ByR, and BzR does not

alter its form in the linear approximation:

• 1 K(KR_n - I)(Bx2R + B2R)aa _ -
(5.20)

As in the case of the large-error estimate, it is convenient to

average the effect over a half orbit to obtain a useful design approxi-

mation which does not involve time. Then, noting the definition of FAV

following (5.8):
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• Me 2 1aAV :-[I_ro 3) K(KR_n - 1)FA aAV •

(5.21)

Observe that (5.211 is a first-order differential equation whose solution

is a decaying exponential for KR > i/(l+k)_s and a growing exponential

for K R < i/(l+k)* . This result is in complete agreement with the con-s

clusions, regarding the effect of KR upon stability, derived rigorously

in Chapter IV.

The validity of this response estimate has been spot checked by

means of several machine solutions of the small-error differential equa-

tions and found to be adequate for design purposes. A run indicating

rather good agreement is shown in Fig. 5-18• The parameters of this run

are: 8. = 90 °, 0 = 5 = 0, altitude = 300 nautical miles,

i ,_ slug_ft2 'K = 584 amp-ft2/gauss-lb-ft-sec, I = 75 slug-ft 2, I = i00
x z

= 0.i rad/sec, KR = 20 sec.S

2, Variation of _a

By virtue of (5.14), _1 and X2 are:

X1 = c13 _ = BylKO
n

•
X2 = c23 - _- = -Bxl Ka "

n

(5.221

tt • . It

Utilizing the averagmng principle and the expression for C developed

in the foregoing section:

2
il : K(- Byl 1

2

_2 = K(- BxlX2

+ BxlBylX2 )

+ BxlBylX 1)

(5 •231

(As in the estimate for the variation of a, Bxl and By I in (5.23)

can be replaced respectively by BxR and ByR.) Now define a new angle

= saXa by the relationships Xl = _a cos Xa and X2 sin Xa. Then
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FIG. 5-18. DAMPING OF TRANSVERSE ANGULAR VELOCITIES.
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and

_a = X1 cos ka + _2 sin ka (5.24)

_a = _ K(By R cos k a - BxR sin ka)2_ a (5.25)

There is a clear similarity between (5.25) and (5.6); this is not unexpected

because, with small errors, X1 = -h and X2 = -h as may be seen byx y

comparing expressions (5.14) and (2.27), with _ = _ = _ = 0 and C
x y z

• . (as the large-erroras in (5 13) Averaging over time and over k a

expressions (5.5) and (5.6) were averaged over k):

(5.26)

Figure 5-19 is a comparison of the exponential response estimate

of (5.26) with the exact response for the run from which the data of

Fig. 5-18 was taken. It is to be expected that the estimate for _a will

not be as accurate as that for a because of the additional approximation

of averaging over k .
a

These response estimates show clearly the dependence of the small-

error system response upon K and K R. Most interesting is the fact

that the amount of effective damping does not depend linearly upon K R

but is, rather, proportional to KR_n-I , where KR_ n is the ratio of

K R to its critical value. Thus, for the two runs of Fig. 5-1 the rate

gains are in the ratio of 5 to i, but the effective damping is in the

ratio of 17 to i. Another observation is that if K R is twice its

critical value the position and rate estimates exhibit the same time

constant.

C. SUMMARY OF PERFORMANCE ESTIMATES

This chapter has developed performance estimates for both the large-

error and small-error performance of a magnetic control system in which

the c0il current is a saturating-proportional function of the error signal.

The primary importance of these estimates is that they separate the geo-

metric effects, as characterized by GAV(8 i, 0, 5), FAV(8i, 0, 5), and
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the altitude, from the parameters of control (i.e. U , K and K R)' O

It is possible to see, for example, that if the geometry is altered so

that FAV is reduced by a factor of two, increasing K by a factor of

two will preserve, in essence, the same small-error performance.

In any particular orbit e i will be constant but _ and 6 will,

typically, vary slowly (a fact which has been neglected as a dynamic

effect) in accordance with the first two parts of expression (2.3). In

designing the control system developed here for any particular mission

it is necessary, then, to evaluate the variation of _ and 6 and,

using contours such as those presented earlier in the chapter, to

evaluate the range of variation of the geometrical gain factors. The

control parameters can then be chosen appropriately, always bearing in

mind that an improvement in performance will generally be accompanied

by greater weight and/or power requirements. These aspects of the prob-

lem are discussed in Chapters VIII and IX.

In this chapter (indeed, in most chapters involving design) the tilt

of the magnetic dipole has been neglected. We find, from the stability

analyses, that this is probably a pessimistic view of the situation; for

example, with the untilted dipole this system will not converge to the

origin with the vehicle in an equatorial orbit, whereas with the tilted

magnetic dipole model convergence will occur because the vehicle cannot

remain in the magnetic equatorial plane (at nonsynchronous altitudes)

due to the rotation of the earth and the inclination of the magnetic
*

dipole to the geographical polar axis.

Although the untilted dipole yields pessimistic stability results

for 0. = 0, use of magnetic control in near-equatorial orbits is
z

generally questionable; in any orbit inclined ll deg or less the orbit

plane will coincide closely, for several hours a day, with the magnetic

equatorial plane, thus producing a situation in which convergence is, at

Notice that for O i = 0, FAV and GAV are misleading in that they

are generally nonzero. The system actually does converge in this case,

but not to the origin (see Chapter IV). The performance estimates are

meaningless in cases for which asymptotic stability does not exist.
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best, slow. On the other hand, for orbits of at least moderate inclina-

tion (say 30 ° < e. < 150 ° ) the tilt of the magnetic dipole can be

neglected for purposes of preliminary design.

We conclude that the estimates developed in this chapter are useful

for most applications of magnetic control to a spinning vehicle. For

orbits of very low inclination each mission should be studied in detail

by simulation; this does not suggest that the control law is not appli-

cable to such situations, but only that care must be taken in its

application.
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VI. MINIMUM-TIME CONTROL FOR THE SIMPLIFIED EQUATIONS OF MOTION

In preceding chapters a magnetic control law has been evolved and

shown to be asymptotically stable in-the-large, and its performance has

been estimated for the important case that the coil current is a

saturating-proportional function of the error signal. Thus far, however,

no evidence has been presented to show that there is not a much better

control law available--for example, one which would reduce the initial

error in much less time than the feedback control system developed in

Chapter III. This chapter presents such evidence, derived by application

of Pontryagin's maximum principle [Ref. 6-1].

Of primary importance is the quality of the feedback control law

for large errors (the acquisition problem), because the small-error

design will be affected significantly by such factors as the avoidance

of chatter and the character of the disturbance environment. A

reasonable design goal for in-the-large performance is the memoval of the

initial attitude error in the least time, consistent with constraints

upon the weight and power consumption. For these reasons, and to reduce

the order of the system of differential equations to be dealt with, we

now consider minimum-time control of the simplified equations of motion.

The problem treated is that of finding the bounded control

([U[ _ U ) which will take this third-order system from its initial
o

state, h(t ) = h , to its desired terminal state (h = h = 0,
o o x y

h = 1) in less time than any other bounded control. Using the maximum
z

principle (which gives necessary conditions for the optimal control) a

set of six differential equations and a control equation are developed

which, when simulated in reverse time on an analog computer, produce

trajectories which satisfy the necessary conditions for the motion of

the optimally controlled system. These reverse-time trajectories are

then compared qualitatively to the trajectories of the system with

signum feedback control of the coil current.
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A.

system can be stated as follows. Define the system by a set of

first-order ordinary differential equations of the form
w

X'l = fi(xl'''''xn' Ul'''''Um)

THE MAXIMUM PRINCIPLE

The general problem of optimal control of a stationar F continuous

n

(6.1)

where the m-dimensional vector with components Ul, u2,...,u m is the
m

control vector, u. In general, u is subject to a constraint (due,

for example, to mechanization considerations) and we say that u must

be in the class of admissible controls, _. A common constraint upon

u is ..lujl _ Uo for all j. The cost of control is defined as

tf

J =f fo(Xl'''''Xn' u I, ...,Um)dt

t
o

(6.2)

where, for example, f is set equal to unity for minimum-time control
o

and is chosen to be a quadratic function of the components of the control

vector for minimum energy control [Ref. 6-2].

The optimal control is defined to be that vector time-function of

class _ which satisfies the specified boundary conditions of the system

in such a way that the cost is less than or equal to the cost with any

other control in _ which matches the boundary conditions. The boundary

conditions generally restrict t, Xl' x2'''''Xn at the initial and

final times. These restraints may take on many forms; for example, t

and the state may be specified completely at both ends of the solution

or, on the other hand, the motion could be constrained to begin at a

specific point and terminate on a subspace of the n-dimensional state

space at som_ unspecified time. In the minimum-time study to be

pursued in the following section, the initial time and both the inital

and final states are prescribed, but the final time is free (unspecified).

To apply the maximum principle to the above problem, we first intro-

duce a new system variable x where
o
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x = f (Xl, ,o o "'" Xn' Ul'''''Um)

and x (t) = O. The vector x will be the n+l
o o

Xl, ,Xn; the vector _ has components ko,X 0 , .'"

a scalar function, the Hamiltonian, by

vector with components

k I, ... ,kn. Define

n

= _ kifi

i=O

(6.3)

where the adjolnt functions ko,...,k n

Hamilton's differential equations:

and the state variables satisfy

1 l

(6.4)

for i = 0,1,...,n. Notice that _ is independent of x so that k
o o

is constant; we will, as in Ref. 6-2, choose k = -I. It should be
o

noted that for the case where the initial and final position of the

system is specified, the boundary conditions upon the ki are free.

There are 2n differential equations (omitting k and x ) but only
o o

n boundary conditions•

The maximum principle states that if u*(t) is the optimal control

and x*(t) is the corresponding solution, then there exists a vector

function k (t) such that _(x*, k*, u*) > _(x*, k*, u) for any u

and u in _.

It is important to remember that this result gives only necessary

conditions; there is, in general, no guarantee that the control and

trajectory so derived will be optimal or, indeed, that an optimal control

exists. The existence problem has been explored extensively [Re£s. 6-3,

6-4], but the question of sufficiency is apparently more imposing.

Indeed, several of the trajectories generated in the present study were

found to be nonsufficient, even though they satisfied the necessary

conditions of the maximum principle.

In the formulation above, the system considered is stationary; these

results can be readily extended to nonstationary systems by introducing
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yet another state variable and appropriately augmenting the Hamiltonian

Xn+ 1 = 1 ; Xn+l(0) = to (6.5)

n+l n+l = _ ' (6.6)
n+l

The new state variable is, of course, time and allows an n-dimensional,

time varying system to be represented as an n+l-dimensional stationary

system. We see also, from (6.6), that maximizing _' relative to u

is identical to maximizing _ with respect to u. Thus the introduction

of the additional state variable may be omitted in practice [Ref. 6-1].

B. FORMULATION FOR OPTIblALblAGNETIC CONTROL

It will prove convenient to use classical vector notation in

applying the maximum principle to optimal control of the simplified

equations of motion. The (three-dimensi0nal) system to be considered is

h:- (_×_)u ; lu I _u . (6 7)
0

Now define a new 3-dimensional vector p with components

P2 = _2 and P3 = _3" The Hamiltonian is

: - f (g,u) - [(_ × g) _]u
o

Pl = XI'

or (6.8)

:- f (K,u) + [(g×_) . _]u .
o

From (6.4)

:- :- × (6.9)

Thus, for this problem, the adjoint equations (6.9) have exactly the

same form as the system equations (6.7).

97



The optimal control* is found by maximizing, at each tim_ (6.8)

with respect to u. For the minimum-time optimal control problem
o

and

= 1

u = U sgn [B " (p × h)] .
o

(6.io)

Much insight can be gained by introducing the auxiliary vector

y = p x h • (6.11)

A differential equation can be developed for

y = p×h+pxh. The result is

y using the relationship

y = - (B X = -
o

(6.12)

iI

which is independent of h and p. This equation can replace the p

equation in the optimal control formulation.

A common method of generating optimal trajectories for a problem in

which h(to ) and h(tf) are specified is to replace the initial

boundary conditions on the system equations by (arbitrary) terminal

conditions upon the adjoint equations. The 2n differential equations

then simulated in reverse time, using the fixed h(tf) and theare

p(tf). By repeating this process for various choices ofarbitrary

p(tf) a family of (potentially) optimal trajectories will be generated•

This procedure is followed in this study, with the exception that y

rather than p is simulated.

A major problem is the choice of the final conditions upon y.

Notice first that y.h = 0 so that _(tf) must be in the plane normal

to h(tf). Thus Y3(tf) = 0. From (6.12) it is clear that y-y = 0

so that the magnitude of y is invariant. Furthermore, if we define

a new vector _' = K_ (K a positive constant), the form of (6.12) is

unchanged. Thus the magnitude of y can be chosen arbitrarily without

altering u(t). In this study I_ I = i.

For this problem the existence of an optimal control is insured by

Theorem 1 of Ref. 6-3. For semantic convenience, we will refer to the

control derived here as optimal even though sufficiency is not shown.
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D m

One advantage of introducing y is now apparent; although y is

necessarily normal to h, p may not be. Thus, it would seem at first

glance that all possible final directions of p would have to be

considered in the reverse time simulation. With hindsight, it is obvious

without loss of generality, the constraints P3(tf) = O, [p[ = 1that,

can be imposed to make h, y, and p an orthonormal set. This

orthonormality is, of course, preserved for all time.

C. THE SIMUlaTION

i. Procedure

The six differential equations (in terms of h and y) and the

control equation were simulated in reverse time using two (slaved) TR-48

analog computers. For purposes of comparison with the feedback control

runs reported in Chapter V, the vehicle altitude was 300 nautical miles,

an untilted magnetic dipole model was used, and U was 58.4. The
o

terminal conditions upon y were

Yl(tf) = cos @f ; Y2(tf) = sin @f ; Y3(tf) = 0 .

and the terminal state was hx(t f) = h (tf) = O, h (tf) = 1. For eachy z

combination of _ , _, and 5 eight values of @ were employed.
i ' f

The runs were allowed to proceed until the attitude error increased to

90 deg. The results, as in the feedback control runs, were plotted in

the (hx, hy) plane. In _ddition, the time required to reach an error

of 90 deg was recorded but has little meaning since at least a few of

the trajectories generated were nonoptimal.

2. Simulation Results

Qualitatively, the trajectories generated in this study are very

similar to those from the feedback control; moreover, the "speed" of

response differs very little. For the special case of @ = 0

In the runs presented here 5, the orbit position (Fig. 2-1) was zero

at t = tf; however, additional runs indicated that variation of

_(tf) altered the small-error optimum trajectories without materially

affecting the motion for large errors.
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(corresponding to orientation of the spin axis normal to the orbit

plane), this similarity is very pronounced and the feedback control is

an excellent approximation (except very near the origin) to the

minimum-time control.

Figures 6-1, 6-2, and 6-3 are the optimal trajectories generated

for @ = 5 = O; these runs are directly comparable to the feedback

control results presented in Figs. 5-4, 5-6, and 5-8. The similarities

+ hy 2- I

FIG. 6-1. MINIMAL-TIME (hx, hy)

TRAJECTORIES FOR 6_. = 30°,

= 0 °, 5 = 0 ° . 1

are very striking, except near the origin where the feedback system

chatters and, as a result, converges more slowly. It is interesting to

observe that, whereas the feedback control switches by definition when

= O, this is not always so for the optimal solution; for example,
Z

at the switch point _ of Fig. 6-3, h is nonzero.
Z
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+h:-I

FIG. 6-2. MINIMAL-TIME (hx, hy)
TRAJECTORIES FOR _i = 600
¢ = 0 °, 5 = 0 °.

8f • 180"

hy

FIG. 6-3. MINIMAIrTIME (hx, hy)
TRAJECTORIES FOR @. = 90 o,

1
¢ = 0 °, 5 = 0 °.
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The cause of this similarity can be explained by examining the

control equation and the auxiliary differential equation (concerning y).

The control equation is

u = U sgn (B y)
o

where the argument can be expanded to yield:

• y = BxR(P2h z - P3hy) + ByR(P3h x - Plhz ) + BzR(Plhy - P2hx )

(6.13)

Consider the form of (6.13) if Y3 is assumed to remain zero all during

the solution. Then

With h, p,

. y = BxR(P2h z - P3hy) + ByR(P3h x - Plhz ) (6.14)

and y comprising an orthonormal set

= y × p . (6.15)

Using the definition of Yl and Y2' and assuming Y3 to be zero,

(6.15) yields:

h x = p3(P3hx - plhz)

hy = - p3(P2hz - P3hy)

(6.16)

Combination with (6.14) gives

l (ByRh x _ BxRhy ) (6.17)
-B Y = P3

which, for P3 > O, is equivalent to the feedback control error

function (3.2) for the simplified equations of motion. It remains to

show that P3 > O. From (6.9)

P3 = - (BxRP2 - ByRPl)U
(6.18)
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where P3 = dP3/dt = -dP3/dT and • is the reverse time. In a manner

similar to the derivation of (6.17), we can show that

BxRP 2 - ByRP 1
B" " Y- h

Z

so that dP3/dT _ 0 throughout the reverse-time optimum trajectory.

The overall situation is as pictured in Fig. 6-4. The reverse time

motion begins as shown in (a) and proceeds to the state shown in (b),

if Y3 remains near zero for the entire solution.

Examination of the variation of y for the cases with 0 = O

indicates that Y3 does remain quite small (but not zero) throughout

the runs, and, as has been shown, this accounts for the similarity between

the minimum time and feedback controls.

Figure 6-5 involves a case for which 0 is nonzero. The

equivalent feedback run is presented in Fig. 5-7. Notice that all but

two of the trajectories of Fig. 6-5 (those with h _ 0) are plainly
Y

dissimilar to the feedback trajectories. However, the convergence

speeds do not differ by much, and the performance of the feedback system

compares favorably to that of the minimum-time system. Notice that in

two cases the trajectories cross. This does not necessarily mean that

one of the trajectories is not optimum because, unless when they cross

the periodic coefficients are identical (at times differing by an integral

number of half orbits), the runs are not directly comparable.

Figure 6-6 is particularly interesting because it shows a clear

case of a trajectory which is not optimum, even though it satisfies the

necessary conditions. Trajectory _ begins (in forward time) at

point (to)l, moves counterclockwise through point (to)2, reverses

itself and continues to the origin, requiring a total time corresponding

to 6.7 orbits. Now the time required to move from point (to) 1 to

point (to) 2 is much less than an orbit. So if instead of following

O, the control were removed at point (to) 2 and reapplied to follow

trajectory _ at the first time when (to)l+t = (to)2+nT , where T

is the period of the periodic coefficients (one-half orbit), an upper
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h(tf)

(a)

(x R,yR ) Plane

p(tz)

k y(tf)
k

x R Axis

(b)

_(t )
o

yR ) Plane

_(to)

_(t ) \
• o \

x R Axis

FIG. 6-4. REVERSE-TIME MOTION OF h, p, AND y

FOR Y3(t) _ O.
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FIG. 6-5. MINIMAL-TII_ (h x, hy)
TRAJECTORIES FOR @. = 60 °

¢ = 60 °, _) = _90o 1

ihy

°1

FIG. 6-6. MINIMAL-TIME (hx,
TRAJECTORIES FOR _ = 60°, hy)

¢ = 90°, 5 = 0 °. i



limit on the total time would be (to)2+3T or 5.6 orbits. Furthermore,

this solution also is not the optimum since the minimum-time control

must be a signum control and therefore cannot be deactivated. Hence,

although _ may represent a minimum-time path to the origin for some

points on it (for example, _), it is not an optimum trajectory along

its entire length.

As a final specific case, consider Figs. 6-7 and 6-8. Figure 6-7

represents the effect of feedback control for 8 = 0 = 90 ° and 5 = O.
1

FIG. 6-7. FEEDBACK CONTROLo (h_, h_) o
TRAJECTORIES FOR 8 = 90 ,

1
5=0 °

Notice that all motions terminate (neglecting terminal chatter) on the

line h = 0 as predicted in the stability analysis for the simplified
X

model with the untilted dipole. Figure 6-8 shows the minimum time

trajectories for the same case (the very slow trajectories marked by an

asterisk were not run to completion). These results are of interest

primarily because they show that even though the feedback control does
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FIG. 6-8. MINIMAL-TIME (hx, hy)
TRAJELTORIES FOR e i = 90 °,
I_ = 90 °, 5 = 0 °.

not give asymptotic stability in this case, there is a control program

which will produce convergence. It must be recalled, however, that

this case is of academic interest only, because with the more realistic

tilted dipole model of the earth's magnetic field the feedback control

system is asymptotically stable in-the-large for all cases.

O. SUMMARY

The feedback control system developed in Chapter III has been shown

to compare very favorably with minimum-time control of the simplified

equations of motion, except very near the origin. This small-error

dissimilarity is not considered important because:

1. Signum control is probably not desirable near the origin , due to

the possibility of chatter.

2. In many applications intermittent (rather than continuous) control

may be preferred for small-err,or control. The role of £he continuous
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control scheme developed here would be the reduction of the initial

errors to the point where the intermittent control scheme could maintain

control.

3. The primary criterion for small-error control is the maintenance

of the specified attitude accuracy, in the presence of external

disturbances, with the minimum possible energy expenditure.
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VII. MAGNETIC CONTROL WITH DISTURBANCES

The lifetime of a satellite is typically composed of a short interval

(a day or less) during which the nominal attitude orientation is initially

acquired and a longer period (a month or more) during which the attitude

control system must maintain the required orientation accuracy in the

face of disturbances. Although the initial transient (acquisition) mode

of operation is important, the steady-state mode of operation will be the

primary factor in determining the total fuel (or energy) consumed by the

control system.

Current design practice is to require of the acquisition mode only

that the nominal orientation be attained successfully within a specified

time following separation of the satellite from the booster. The criterion

for operation in the steady-state mode is the maintenance of the specified

control accuracy with the least control effort.

In this chapter the forced response of the magnetically controlled

spinning satellite is discussed, using techniques analogous to those

employed in Chapter V to analyze the unforced small-error motion with the

exact equations of motion. The disturbances Considered are of two types:

(i) motion of the reference frame (XR' YR' ZR) in inertial space

(kinematic disturbances), and (ii) environmental torques upon the vehicle

(dynamic disturbances). Of the latter, this discussion is restricted to

aerodynamic pressure torques, solar radiation torques, gravity-gradient

torques, and torques due to residual magnetic moments in the vehicle.

For the pressure torques, the outer structure of the vehicle will be

assumed spherically shaped.

Notably absent from this list is the torque due to eddy currents

induced in the satellite. Although they are not always negligible, it is

not unrealistic to restrict this discussion to cases in which they are.

For example, the eddy current torque on a homogeneous, spherical, thin-

walled, spinning shell has been shown by Vinti [Ref. 7-1] to be

approximately proportional to (u_<B)xB, where _ is the total angular

velocity of the sbell and B is the environmental magnetic field. Put

in the form of a cross-product of a magnetic moment o_<B with a magnetic

field vector B, it can be seen that, for a vehicle spinning about its
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nominal spin axis, the eddy currents produce a magnetic moment normal to

the spin axis, z b. The lines of current flow are circles about the

transverse diameter of the satellite defined by ezb×B, and each current

path traverses parts of both the _pper and lower hemispheres of the

spherical shell. It is clear, then, that this current distribution will

be completely disrupted (and the magnitude of the eddy current torques

greatly reduced) if the satellite is assembled from two hemispheres with

an insulating layer between the half-shells. The plane of joining must,

of course, be normal to the nominal spin axis. This scheme of

lamination can be extended to more realistic satellite configurations for

which, owing to their shape and/or their lack of conductive homogeneity,

the eddy currents cannot be readily evaluated.

One parameter which is not often at the disposal of the designer of

the control system is w , the spin speed. As will be seen, the attitude
S

drift rate due to disturbance torques is inversely proportional to the

spin rate. The level of control torque required to alter the attitude at

a given rate is similarly related to the spin speed. On the other hand,

the kinematic error buildup due to motion of the reference frame is

unaffected by w . Thus, from the attitude control viewpoint, the spin
S

rate should be large enough to provide the vehicle with short-term

gyroscopic stability without being so large that the cost of tracking the

*
moving reference axes becomes prohibitive. Clearly this is a tradeoff

which involves the relative amplitudes of the kinematic and dynamic

disturbances, and is, therefore, a function of each particular application.

A . DI STURBA NCES

i. Motion of the Reference Coordinate Frame

ity,

The components in reference coordinates of the inertial angular veloc-

_R, of the reference axes are x_ _ _y, and _z. These components are

This is the reason that spin stabilization is impractical if the axis

of desired orientation, ZR, is moving rapidly in inertial space. We

would not, for example, attempt to align a spinning satellite with the

vehicle-earth line (local vertical).
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mission dependent; for example, if the spin axis is to be pointed at a

star, _R is essentially zero, while if the vehicle is sun oriented, the

magnitude of _R is approximately one deg per day.

One other example of special interest is that in which the spin

axis is aligned normal to the orbit plame. In this case, _ = 5 = 0

and the (XR' YR' ZR) coordinate frame is aligned with the (Xn' Yn' Zn )

axes (see Fig. 2-1), The total angular rate _R is

= (7.l)

Resolution into reference coordinates yields:

= 0
x

= _ sin G. (7.2)
y z

o

= _ COS _.
Z Z

where _ is given in Chapter II.

2. Disturbance Torques

a. Aerodynamic Pressure

For altitudes in excess of I00 nautical miles it is reasonable

to consider the atmosphere as an aggregation of stationary molecules

through which the vehicle is moving at a high speeds Each molecule

Which impacts with the vehicle has a certain probability of "sticking"

to (being accommodated by) the satellite (and imparting all of its

relative momentum to the vehicle), or oL being_reemitted from the

satellite (in this case a nondissipmtive collision will be assumed).

Under these circumstances, the pressure, and shear on the differential

area of Fig. 7-1 are [Ref., 7-2]:

The vehicle velocity is much greater than the RMS molecular velocity of

the atmosphere..
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v

Geometric

Centroid

(e v. e t _ 0, ev. en _ 0) dA

FIG. 7-1. AERODYNAMIC FORCES ON A DIFFERENTIAL AREA.

2 2 2

-Pa = (2 - fn )pav cos 0 ib/ft

2 2

_a = ftPa v sin @ cos 9 ib/ft

where v = ve is the vehicle velocity (for circular orbits e = e
v v yo

N

as defined in Fig. 2-1), e is the outward unit vector normal to dA,
n

Pa is the atmospheric density, ft is the tangential accommodation

coefficient, and f is the normal accommodation coefficient (see
n

Ref. 7-2). The total incremental force, resolved along the orthogonal

unit vectors e t and en is

dF 2 ((2 f )(ev " en )2 - + ft(ev " en )[- × (_ × en )]) dAa = - Pav - n en en v

(7.3)

The force may also be resolved with respect to the nonorthogonal

directions e and e :
v n

..... -- )2 -- (_vdFa 2q* E(2 fn ft )(e e e + ft
v n n

e n ) ev] dA (7.4)

where q* is the dynamic pressure (see Fig. 7-2).

112



-3
i0

q

(Lb/Ft 2)

10 -4

I0 -s

lO -6

-7
i0

0 i00 200 300

Altitude

(Naut. Mi. )

400

FIG. 7-2. DYNAMIC PRESSURE FOR LOW ALTITUDE CIRCULAR ORBITS
(ARDC 1959 ATMOSPHERE).
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The incremental torque upon the vehicle is

B _ m

dN = r >< dF (7.5)
am a

B

where, of course, dF is taken to be zero if the differ_tial area is
a

shaded from the air stream by some other poTt_ion .of the veh_.cle.

For a vehicle with a spherical outer structuTe, the total

force acts through the geometrical centroid in the direction -e . Ifv

is the vector from the center of mass to the geometric cemtroid, the

aerodynamic torque is:

= _ × _ (7.6)
a a

The total aerodynamic force is, by integration of '(7.4) over one hemisphere,

found to be:

_ e _R2_*: 1_ (7.7)= - (_ _ _ __
-a .... t -n .....b TM Vv

where the quantity in parenthesis is the drag coefficient, %, and R b

is the radius of the vehicle. According to Schamberg [Ref. 7-3] the

drag coefficient is approximately 2.63 for spherical satellites.

As in Chapter V, the equations of motion in the "despun"

coordinate system (Xl' YI' Zl) will be used. After expressing Fa and

in this coordinate system, formation of the indicated cross-product

gives:

i m

ii 3Va22Va32VaiC133va32va2C3naDa
Lna2J _3Val- _iVa3 + (_3Va3 + _iVal)Cl3 + _iVa2C23

(7.8)

where:
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2,

CDnRbq
D =

a I
X

B w

Val = ey o exR
=- cos @ sin (C_- 5)

m

Va2 = ey o

m

ey R = cos (c_- 5)

Va3 = ey o ezR
= - sin @ sin ((_ - 5)

D

_i cos y - Z sin y= _ exl = _x y

_2 = _ " eyl = 2 sin y + _ cos Y
x y

_3 = _ " ezl = _z

The components of the geometric centroid--center of mass offset in the

body-fixed (Xb' Yb' Zb) coordinate system are _x' _y' and _z" The

angle y, defined in expression (2.4), varies at spin rate (y = w ).
s

The aerodynamic torque is seen, from expression (7.8), to contain no

terms which have a nonzero average over an orbit.

b. Solar Radiation Pressure

The solar radiation pressure torque upon a satellite can be

determined using a momentum interchange model analogous to the one for

aerodynamic torques, where, in this case, the vehicle velocity is

negligible with respect to the particle velocity. Using such a model

(and assuming that the probability of reflection of tangentially incident

photons is the same as that of normally incident photons) the following

result is presented in Ref. 7-4:

- - )2 - _n - -dFs =- Vs((1 + v)(exs en en + (1 - v)(_xs • en )[ × (exs × e n)])dA

(7.9)

where v is the solar reflectivity

from the vehicle to the sun, and V
S

m

(0 _ V _ i) e is the unit vector
XS

is the solar radiation pressure
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constant. (V varies as the inverse of the square of the distance from
s

the vehicle to the sun, and is approximately 0.94 × lO -7 lb/ft 2 in the

vicinity of the earth's orbit.) Notice that expression (7.3) yields

expression (7.9) if the following replacements are made:

2

pav _ V s

f -----_i - V
n

f -----_ 1 - V
t

m m

e -----_ e
v xs

By analogy with (7.8), the accelerations due to solar

radiation pressure are:

i

Fnsl_ F_0 ,, _ _2Vs 3 - 0 ,, - (0 ,, _ _ v _r

Lj ' -s1ns2 _3Vsl - _lVs3 + (_3Vs3 + _lVsi)Cl3 + _lVs2C23

(7.10)

where

R2Vs
D = -

s I
x

p m

Vsl = exs exR

Vs2 = exs ey R

__ m

Vs3 = e •xs ezR

and _1' g2' and _3 are defined as before. (Occultation of the sun

by the earth is neglected.)
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m

In order to determine the components of e in reference
xs

coordinates, e is assumed equivalent to the earth-sun line (for earthxs

satellites this is a good approximation) In this case, -- which
• exs,

moves in the ecliptic plane, can be referenced to the inertial (Xe' Ye' z )e

coordinate system as shown in Fig. 7-3. The angle S is zero at the

Vernal Equinox. Applying the transformations indicated by Figs. 2-1,

2-3, and 7-3:

Vsl = - cosg cosS(cos_ cosS + cos_ sir_ sinS)

+ cosg sinS[cosS.(sir_1 cosS- cos_ cos_ sinS) + sine i sin G sinS]

+ sing[sine. (sir_ cosS- cos_ cos_ sinS) - cos8. sin_ sinS]
I I

Vs2 = sinS(cos_ cosS+ cos_ siqS sinS) (7.11)

+ cosS[cosei(sir _ cosS - cos_ cos_ sinS) + sine. sin_ sinS]
i

Vs3 = - sing cosS(cos_ cosS + cos_ sir_ sinS)

+ sing sin_cose. (sin_ cosS- cos_ cos_ sinS) + sinE) sin G sinS]
I i

- sinS[sinS.(sir_ cosS - cos_ cos_ sinS) - cose. sin_ sinS]
i i "

These coefficients are essentially constant over an interval of a day;

thus, the terms _3Vs2 and _3Vsl in expression (7.10) will be

considered as constant forcing torques for evaluation of the steady-state

response.

c. Gravity Gradient

As shown in Ref. 7-5, the gravity gradient torque upon a

satellite in a circular orbit is, in body-fixed coordinates:

Ny b = 3t02°

__ Nzb _

"(I - I )(_
z y xo _yb)(Lo • ezb )"

 z)(eo"e )(eo ez )

(I - I )(_ • Lb)(_ • --_ y x xo xo eyb)_

(7.12)
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FIG. 7-3. MOTION OF THE EARTH-SUN LINE

IN EQUATORIAL COORDINATES.

By suitable transformation the components of gravity gradient

acceleration along the x I and Yl axes are determined to be, for an

axially symmetric vehicle:

m

IIleoeeoez2
Lng2J (LO " exl)(Lo " ezl)

(7.13)

In terms of the attitude variables and the components of the unit local

vertical vector (e ) in reference coordinates:
xo
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ngl

ng2
m

= D
g

Vg2Vg3 vglvg2c13+ (v 3 v 2)c23

2
-VglVg 3 - (v_3 - Vgl)Cl3 + VglVg2C23

(7.14)

where

D = 3kJ
g o

=e
Vgl xo

e = cos _ cos (a- 5)
xR

v = e e = sin (a- 5)
g2 xo yR

Vg 3 = exo ezR
= sin _ cos (a - 5)

It is particularly interesting to examine the character of the attitude-

independent terms in (7.14). Forming the indicated products:

1
Vg2Vg 3 = _ sin @ sin 2(a - 5)

1

VglVg 3 = _ sin _ cos @[1 + cos 2(CZ - 5)] .

(7.15)

Thus, unless @ is 0 deg, 90 deg, or 180 deg, gravity gradient will

produce a constant forcing term.

d. Residual Magnetic Moment

In any satellite there will be an undesirable magnetic moment

made up of a residual component (essentially constant) due to magnetization

of various parts of the vehicle, and a time-varying component caused by

currents flowing in the vehicle (e.g., current flowing to or from the

battery). Considering only the residual magnetic moment, the torque is

"N 6.86 x 10 -6 -- --= m X B (7.16)

-- amp_ft 2 --where m is measured in and B is in gauss.

acceleration due to this effect are:

The components of
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, nml -ByRm 3 + BzRm2 - BxRm2Cl3 - (BzRm3 + ByRm2)c23

= D (7.17)

_.nm2J L BxRm3- BzRml + (BzRm3 + BxRml)c13 + ByRmlc23J

where

D

m

6.86 X 10 -6

I
x

BxR = -

M

e [[sin 5 + 3 sin (2a - 5)]cos ¢ sin 8. + 2 sin ¢ cos Oi)1
2r 3

o

M

- _ [[cos5 -3 cos (2a - 5)]sin 0i}
By R = 2r 3

v

M

= e [[sin 5 + 3 sin (2CZ - 5)]sin ¢ sin 8. - 2 cos ¢ cos Oi)
1

BzR 2r 3
o

m I = m cos y - m sin yx y

m2 = m sin y + m cos yx y

m 3 = m z

and m , m are the body-fixed constant components of residual
x my, z

magnetic moment.

The magnetic field components BxR and By R can have an

average value Therefore, if m is nonzero, a steady forcing torque
• z

will be produced. It is interesting that such a residual magnetic moment

along the spin axis is equigalent to a bias in the control magnetic

moment; with proportional control m will amount to an offset of the
z

null point in the control characteristic as shown in Fig. 7-4.
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FIG. 7-4. SHIFT OF THE CONTROL CHARACTERISTIC BY A

RESIDUAL SPIN AXIS MAGNETIC MOMENT (EXAGGERATED).

B. SYSTEM RESPONSE TO DISTURBANCES

Assuming proportional control, the small-error equations of motion

with disturbances (see Chapter II) are, neglecting second-order terms of

the type c13_ , etc:Y

_I = -Wn(W2 + KByR°) + nl

_o2 = _n(_O 1 + KBxRO) + n 2

c13 = -w 2 + _y

(7.z8)

c23 = e I - x

where
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a = BxR(C23 - KR_ 2) - ByR(Cl3 - KR_ 1)

w = (1 + k)w
n s

Examination of the torque equations derived above shows that n I and n 2

can be written in the general form:

n 1 = nl0 + rill cos ¥ + n12 sin T

n 2 = n20 + n21 cos y + n22 sin y

(7.19)

where the n..
19

are:

(neglecting torque terms which are attitude dependent)

nlo = DgVg2Vg 3 - DsZzVs2 - Da_zVa2 - DmmzByR

- -D v "" + .... + D _ v
n20 - g gl'g3 _s_z_sl a z al + Ummzt_xR

nll= n22 = DsZyVs3 + DaZyVa3 + DmmyBzR

(7.20)

nl2 = -n21 = Ds_xVs3 + Da_xVa3 + D m Bm x zR

The parameters in (7.20) are defined in expressions (7.8), (7.10), (7.14),

and (7.17).

The disturbance accelerations, as well as the control terms, are so

small that the variables XI, X 2, and a (see Chapter V) defined by

w = a cos
1

w 2 = a sin

w 1

c13 = X1 + --W
n

(7.21)
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are slowly va_yir_g te a go_d approximation• Let ao, XIO' and 120

be the slowly _arying solutions to the first approximation of Krylov and

Bogoliubov [Ref. 5-1]. Eollowing the procedure used in Chapter V:

fK B2 B2"t
a = - (KR_ n i) xR, + yRO -- 2' ao + ave In 1 cos _ + n 2 sin _)

. nlO

XIO : % _': + K(-B_R_,IO + B:xRByRT_20)
n

(7.22)

n20

_20 = -_ x w
n

_ -- + K(-B_R_20 + BxRByRXI0)

Since _ is very nearly equal to _ = (l+k)w and, for k _ 0, this
n s

frequency does not appear in the disturbance acceleration components, the

disturbance-dependent part. of a is zero. Thus, in order to estimate
o

the forced response of a, the first approximation must be refined as

in Ref. 5-1. Noting that

a = _i cos _ + _2 sin
(7.23)

the time derivative of a can bewritten in the form:

a =-_o + A 1 cos _ + A 2 sin _ + A 3 cos 2_ + A 4 sin 2_

+ nil cos (_ - y) - n12 sin (_ - y)
(7.24)

where:

A 1 = nlO + K_n(B_RK10 - BxRByRK20)

A 2 = n20 + K_n(B_R_20 - BxRByR_I0)
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B 2 _ B 2

7R xR
A 3 = K(1 - KR_ n) 2 ao

A 4 = -K(I - KR_n)BxRByRao

These coefficients are slowly varying so that a can be found by taking

the indefinite integral of (7.24) with the coefficients assumed constant.

This yields a refinement of the first approximation:

a = a
o

A 1 A 2 A 3
+ -- sin _ - -- cos _ + sin 2_

co co 2--_--
n n n

A4 nll nl2

- 2--_-- cos 2_ + _-- sin (_ - y) + _-- cos (_ - y)
n s s

(7.25)

In the steady state a is zero, by solution of the differential equation
o

for a . Thus, in determining the steady-state response, the terms
o

concerning Co, A 3, and A 4 may be neglected. Using this result

upper bounds may be derived for the angular velocities e 1 and _2:

{ll
1 21

2 2 nll+ n12+ A 2
+ +

_o k¢o
n s

2 2 nll+ n12A + A 2
+ +

_o k_o
n s

(7.26)

This indicates that the effect of the disturbances is inversely

proportional to the spin rate; moreover, the amplitude of the response

excited by the forcing terms at spin frequency is inversely proportional

to k (these results assume k i 0).

Examination of (7.26) shows that, for most applications, the transverse

angular velocities are negligible, owing to the small magnitude of Al,
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and n22. Typically, I_iI and le21 will be no more thanA 2 , nil,

10 -4 rad/sec.

Refinement of the first approximation in (7.22) for the average

attitude variables X1 and X2 yields terms which are proportional to

a . Since a is zero in the steady-state motion, the Eqs. (7.22) of
o o

the first approximation are sufficient to describe the steady-state

motion. Furthermore, if the steady-state pointing accuracy is not required

to be extremely high, the contribution of e I and e 2 to c13 and

c23 may be neglected. In such cases, the steady-state attitude motion

can be estimated to good accuracy by solving the following linear,

time-varying differential equations:

I'll I -B2R BxRByRI IXII Ill - nlo/enl

= K + .

B 2
X2 BxRByR - xR J X n20/enJ

(7.27)

Analytically, these equations are no easier to solve than the nonaveraged

equations (7.18), because both sets are nonstationary. However, machine

solution of the averaged equations proceeds much more rapidly than

numerical integration of the nonaveraged equations because in the latter

case the speed of solution must be scaled to accommodate the rapidly

varying components (which have been averaged out in deriving the equations

of the first approximation).

Figure 7-5 exhibits comparative solutions for the exact small-error

equations of motion and the averaged equations of motion with forcing

from gravity-gradient, solar radiation, and aerodynamic disturbance

torques as well as motion of the reference coordinate axes. System

parameters for this data are:

el(o) = e2(o) = Cl3(O) : c23(0) = _(0) = 0

I
x

2
= 75 slug-ft
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FIG. 7-5. COMPARISON OF SOLUTIONS TO EXACT AND AVERAGED EQUATIONS OF

MOTION WITH DISTURBANCES.
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I = 100 slug-ft 2
Z

= 0.1 rad/sec
S

Altitude = 300 naut. mi.

G i = 90 °

¢=_=0

KR = 20 sec

K = 584 amp-ft2/gauss-lb-ft-sec *

= 2 X 10-7 rmi/sec
X

-7
= i0 rad/sec

Y

Rb = 5 ft

Vsl = .7071

Vs2 = 0

Vs3 = .7071

c D = 2.6

= _ = _ = 0.2 ft .
x y z

As always in these performance studies, the untilted dipole model of the

earth's magnetic field is used.

As mentioned before, with K specified in these units, the equations

of motion must be modified everywhere, replacing K by 6.86 X IO-6K.
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FIG. 7-6. COMPARISON OF EXACT SOLUTION FOR THE TOTAL TRANSVERSE ANGULAR

VELOCITY WITH THE APPROXIMATE UPPER BOUND IN THE PRESENCE OF
DI STURBA NCES.
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Solution of the exact equations required, in this case, five minutes

on the B5000 digital computer, while solution of the averaged equations

of motion for the same amount of orbital motion (2.4 orbits) required a

computation time of only 16 sec. Thus the averaged equations were

solved, in this case, at a cost of approximately one twentieth the cost

of obtaining the same solution by means of the exact small-error equations

of motion.

Notice that the motion, as we might expect from the character of the

forcing terms (and the periodic coefficients in the differential equations),

exhibits both constant components and terms at frequencies related to the

orbital motion of the vehicle. The effectiveness of the active damping

law is shown by the close correspondence between the solutions to the

averaged equations and the exact solutions. From (7.21), this indicates

that e I and _2 are maintained at levels which, in this case,

contribute negligibly (when compared with _i and X2) to c13 and

c23"

From (7.26) an upper bound on the total transverse angular velocity,

21+_2 , can be computed. Figure 7-6 shows this bound and sample points

from solution of the exact equations for the preceding case. The bound

gives a good estimate of the behavior of the total transverse angular

velocity. The small discrepancy at the beginning of the data occurs

because a is not quite zero initially, although it was assumed to be
o

so in deriving the upper bound.

C. SUMMARY

In this chapter, averaged equations of motion for the disturbed

system have been developed. Although these equations still require

numerical solution, their solution can be obtained much more economically

than the solution of the exact small-error equations. Using a refinement

technique of Krylov and Bogoliubov, it is seen that in many applications,

the attitude errors c13 and c23 are accurately represented by X1

and _2" In situations for which e I and _2 contribute significantly

to c13 and c23 , the attitude errors are bounded by:
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ICl31C Ix1-[
n

[%1
[c2z[ _ [x2t + c_

n

(7.28)

As mentioned above, the averaged equations (7.27) are not amenable to

closed-form solution. For this reason, and because the disturbances

depend strongly upon the vehicle configuration, it is difficult to make

any precise statement regarding the relative signfficance of various

disturbances. Because the coefficients of X1 and X2 in the differential

equations (7.27) depend parametrically upon 6., _, and 5, and since
1

the coefficients of the forcing terms nl0/W n and n20/_ n are functions

of these parameters as well, the manner in which the accuracy of control

depends upon 6., _, and 5 is impossible to ascertain without an
1

exhaustive (mud prohibitivcly expensive) simulation study.

It is, however, possible to make qualitative statements regarding the

effect of altitude upon the relative importance of the various disturbance

torques considered in this chapter. At extremely low altitudes, atmo-

spheric pressure can be expected to be the dominant disturbance with

solar radiation pressure much less important, and gravity gradient and

residual magnetic disturbances somewhere in between. As the altitude

increases (say to 500 nautical miles) the dynamic pressure decreases

sharply (Fig. 7-2), and the effects of gravity-gradient and residual

magnetism become relatively more significant, since these latter effects

are inversely proportional to the cube of the orbital radius. At very

high altitudes (for example, 10,000 nautical miles), solar radiation

pressure can be expected to dominate, since the magnitude of this effect

is dependent upon the distance of the vehicle from the sun and,

therefore, essentially independent of the orbital altitude.

The magnitudes of the coefficients of X1 and _2 in (7.27) are

inversely proportional to the sixth power of the orbital radius; however,

this effective decrease in control gain as the altitude increases can be

compensated, to a point, by increasing the control gain K.
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The logical approach is to treat each design problem individually

by simulation. The averaged equations of motion (7.27) developed in

this chapter greatly facilitate such studies. A particular mission is

treated by these techniques in Chapter IX.
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VIII. MECHANIZATION CONSIDERATIONS

The magnetic control system developed and analyzed in preceding

chapters requires, in addition to a torquing coil, knowledge of certain

attitude variables and magnetic field components. In order to realize

a completely self-contained system, the variables present in the error

function, _, must be determined by on-board measurements. This chapter

deals with the implementation of the actuator (torquing coil) and dis-

cusses the problem of sensing the necessary attitude variables and

magnetic field components.

A. ACTUATOR DESIGN

Magnetic moments can be generated either by air-core coils or sole-

noids with ferromagnetic cores. In the former case, the area of the coil

is made as large as is compatible with the structure of the vehicle.

rods and offer the advantages of reduced size and weight. A disadvantage

of using a ferromagnetic torquer is the presence of residual flux in the

core which may result in a residual magnetic moment of from one to ten

percent of the maximum available control moment [Ref. 8-1]. For our

purposes, it is sufficient to consider only air-core coils.

The control law developed in this study requires the generation of

a magnetic moment aligned with the spin axis of the vehicle. This

requirement can be satisfied by passing current through a planar coil

normal to the spin axis. For an N -turn circular coil of radius R ,
c e

and winding thickness much less than R , the magnetic moment will be:
c

m = nR2N i (8.1)
cc

Reference 8-2 includes a thorough discussion of the design of ferro-

magnetic actuators for satellite attitude control, with experimental

data. Reference 8-1 is an abbreviated version of the actuator design

study presented in Ref. 8-2.
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where i is the current through the coil and the direction of the

magnetic moment is as shown in Fig. 8-1.

m = me-zb

Satellite

Torquing
Coil

FIG. 8-1. MAGNETIC MOMENT PRODUCED BY A

CIRCULAR TORQUING COIL.

One approach to the coil design problem is to regard the maximum

available voltage (Vm) , the coil radius and the maximum required

magnetic moment (mm) as specified quantities [Ref. 8-3]. If p Is

the resistance per unit length of the wire, the magnetic moment depends

upon the applied voltage in the following way:

R v
c

m - (8.2)
2p

This immediately specifies p as:

R v

c m t_'-. 3)P= 2m
m

The power consumed is

P

2
v

2XRcNcP
(8.4)
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With p

V = V )
m

specified as in (8.3), the maximum power (corresponding to

is:

m v
m m

P -

m _R2N
C C

(8.5)

The coil weight is

W = 2_R N w • (8.6)
C C

where w is the mass per unit length of the wire. Notice that pw is

equal to the product of the mass density and the resistivity of the

material used in the actuator, Values of K = pw are tabulated below
w

for several metallic conductors.

TABLE 8-1. THE PARAMETER Kw = pw FOR SEVERAL
CONDUCTORS (TEMPERATURE = 20 ° C.)

Aluminum

Copper (annealed)

Copper (hard-drawn)

Gold

Magnesium

Silver

Zinc

Resistivity Density 105 pw

(_ - ft) (ib/ft 3) (ib - _/m2)]

9".28 X 10 -8 .554 × 103 1.57

5.64 X 10 -8 1.82 × 103 3.14

5.80 × 10 -8 1.83 X 103 3.24

7.27 × 10 -8 3.96 × 103 8.77

15.1 × 10 -8 .356 X 103 1.64

5.35 X 10 -8 2.15 >< 103 3.50

19.4 X 10 -8 1.46 × 103 8.66

The product of the coil weight and the maximum power consumption is,

for any particular coil material, independent of the coil parameters:

The total system weight, including the power supply, will depend upon

the maximum power as well as upon the coil weight. This factor is not

considered here, but it is discussed in Ref. 8-1.
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K
PW = w 2-= v (8.7)

m z m

P

For p chosen as in (8.3):

2
4K m

P W = w m (8.8)
m R 2

C

Assuming that the coil temperature is controlled to a specified

value, specification of @ and the material will dictate the wire size.

From the preceding table, aluminum is the material giving the smallest

coil weight for any p. The remaining parameter to be specified is N
C'

the number of turns in the coil; its choice is equivalent to specifying

the weight-power trade-off for the coil. However, the choice of N
C

is limited by either the current which may safely pass through the wire

or the current available from the power source. If i R is the current

limit:

m
m

N >

c _ iR

(8.9)

Determination of the current limitation for the wire is not easy. It

depends upon the temperature at which the wire may safely be operated

and the thermal environment of the coil, which may or may not be the

same as that of the interior of the satellite. With an effective thermal

control system it is likely that the primary limitation upon N will
C

result from the current available from the power source.

B. SENSOR REQUIREMENTS

Implementation-of the control law evolved in Chapter III requires

the formation of the error function

0 = Bxb(a23 - KR_y) - Byb(al3 - KR_ X)
(8.1o)
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where Bxb and By b are the magnetic field components along the

transverse vehicle axes, and _ and _ are the transverse angular
x y

velocities.* The attitude variables, al3 and a23 , are the compo-

nents of the ezR vector (which defines the desired spin-axis

orientation) measured along the body-fixed transverse axes. Each of

these variables must be measured, or calculated from measurements of

other variables, to mechanize the control law.

1. Magnetic Field Measurements

Several devices have been developed for making magnetic field

measurements in space [Ref. 8-4]. Of these, the fluxgate magnetometer

appears most useful for measurement of the components of the earth's

magnetic field in the vehicle [Refs. 8-4 and 8-5]. According to Cahill

[Ref. 8-4] fluxgate magnetometers are capable of a measurement accuracy

of 0.1% of full scale with a full-scale range of from + 0.0002 gauss to

0.50000 gauss. The frequency range of this sensor is approximately zero

to lO0 cps, giving a cutoff frequency well in excess of the spin fre-

quency of any conceivable spinning satellite. Such a magnetometer

(capable of measurements along three orthogonal axes) has a weight of

one to two ibs and a power requirement of about 0.3 watts. The other

types of magnetometers thus far employed in outer space have better

absolute accuracies (for example, the rubidium vapor magnetometer has a

-- --7

sensitivity of l0 gauss, 25 times better than that of the fluxgate

magnetometerS), but in general, they weigh more, consume more power, and

have a much smaller frequency range. The loss in sensitivity is accept-

able because magnetic control will be practical only in regions of space

where the maximum magnetic field is much larger than 0.0000025 gauss,

the null sensitivity of the fluxgate magnetometer.

A major limitation in measurement of the transverse components

of the earth's magnetic field is interference with the measurement by

the magnetic field generated by the torquing coil. Theoretically, the

If, instead of active magnetic damping, another form of damping is

employed, the rate-dependent terms are omitted from (8.10).
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magnetometers can be located so that the magnetic field from the actuator

is normal to the sensitive axis. Another approach, often employed on

scientific satellites, is the placement of the magnetometers on long

booms extending away from the vehicle. Still another technique, sug-

gested in Ref. 8-2, is the creation of a compensatory field in the region

of the magnetometers by means of small coils connected in series with

the torquing coil. Such a system must be calibrated prior to launch.

2. Attitude and Rate Measurements

Measurement of the transverse angular velocities can be accom-

plished by using two rate-sensing gyroscopes• Of course, these gyro-

scopes must be carefully aligned to minimize the interference caused by

any component of spin rate along the gyro input axis.

Another source of rate information, often used in controlling

fully stabilized vehicles, is provided by observing the rate of change

of the attitude variables. From the kinematic equations of (4.3)

a13 = a23_ s - a33_y

a23 = a33_ x - a13_ s

(8.11)

For small errors, a33 _ 1 and (approximately)

_x = a23 + _sal3

_y = -a13 + _sa23

(8.12)

These equations can be mechanized as shown in Fig. 8-2. The differentia-

tion is mechanized approximately to reduce the noise problem introduced

by differentiation of sensor outputs. The cutoff frequency of the

differentiation filter, l/T, should be somewhat greater than the spin

frequency for accurate differentiation at the frequencies of interest.

Of course, since this technique is based upon the assumption that a33

is unity, it is accurate only when the attitude errors are small.
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FIG. 8-2. ESTIMATION OF THE TRANSVERSE ANGULAR

VF_J.DCITIES FROM THE ATTITUDE VARIABLES.

which a13 and

upon the mission.

be discussed.

The necessary magnetic field and angular velocity messurpme,lts can

be made by using magnetometers and gyroscopes as outlined above, inde-

pendent of the desired spin-axis direction. In contrast, the ease with

a23 can be measured (or estimated) is very dependent

To illustrate this fact, three specific examples will

a. Solar Pointing

First, consider the problem of orienting the spin axis of a

spinning vehicle toward the center of the sun for solar experimentation

or to provide efficient solar-to-electrical energy conversion in a case

where the spin-axis attitude need not be otherwise constrained (a

detailed design for an application of this type is exhibited in Chapter

IX). A simple sensing element which can be used in this case is the

silicon solar cell, the output voltage of which is very nearly propor-

tional to the cosine of the angle of incidence of the solar radiation

upon its surface [Ref. 8-6]; that is, the output is, to a good approxima-

tion, proportional to the projection of the vehicle-sun line (which is

z R in this case) upon the axis normal to the surface. Figure 8-3 shows

a view in the transverse plane of a satellite with the shape shown in
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bs2

Spin
Direction

_xS1 b

FIG. 8-3. SENSOR CONFIGURATION FOR

SOLAR POINTING.

S4

Fig. 8-1. Each of the sensors S1, $2, S 3 and S 4 is positioned with

its sensitive surface outward and normal_'to the axis along which it is

located. Denoting the output voltage of S l as Si, and assuming each

cell to have the same gain factor, Ks, it is clear that

S1 - $3 = Ksal3

$2 -$4 = Ksa23

(8.13)

In most applications, an additional fine sensor, $5, will be included

to provide a high degree o£ null accuracy. One such fine sensor is

described in Ref. 8-6.

It is clear that the required attitude variables may be

readily measured for the solar pointing application; moreover, the

ability to measure these variabl_s_s_ot a function of the pointing

error because the sensors, i£ they are not Shaded, provide all-attitude

information.
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b. Stellar Pointing

Next, consider a mission for which the spin axis is to be

pointed toward a specific star. A null-seeking star tracker is

generally used for such an application. This device consists of a

photoelectric sensor and associated optics mounted on a platform which

is coupled to the body by means of gimbals (for example, as in Fig. 8-4).

Using the sensor outputs, the gimbal control system attempts to track

Target

Star

J

J

z Zb Zg ZR

_ OsePnt:c Sngand

Mount Gimbal Element

(fixed in

vehicle)

_ Yb

FIG. 8-4. A STAR TRACKER CONFIGURATION.

the star so that, statically, the sensor outputs are zero. The attitude

variables a13 and a23 can be computed directly from the gimbal angles

to an accuracy dependent upon the tracking error and the quality of the

pickoffs :

u

a13 = ezR " exb = sin 81 co s 0 2

a23 = ezR ' ey b = sin 92 .

(8.14)
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The star tracker presents several problems not encountered

with sun sensors. One of these concerns the gimbal control system; its

response must be "fast" relative to the motion of the vehicle; otherwise

the gimbal control loop and the attitude control system will be coupled.

Still more disastrous is the possibility that a rapid vehicle motion

could take the star line-of-sight out of the field of view of the optics

(which is usually on the order of 1 deg).

A second difficulty is that the star tracker is generally

enclosed in the vehicle and must "see" through a window of limited

dimensions. This factor limits e 1 and 92 and, therefore, attitude

control can be maintained only for a restricted range of al3 and a23.

Yet another problem associated with the use of a star tracker

in a spinning vehicle is that of assuring that the correct star is

tracked. The target star must be found initially by some sort of pre-

programmed search. Since such a search will be difficult from a rapidly

spinning vehicle, the search will probably be performed prior to separa-

tion of the satellite from the final stage of the booster (which must be

attitude controlled as is, for example, the AGENA). If, due to a subse-

quent malfunction, the target star is lost, its relocation may be a

major problem.

c. Orbit-Plane-Normal Pointing

An application which has received considerable attention in

the past is alignment of the spin axis normal to the plane of the orbit

of the satellite [Refs. 1-9, 1-11, and 8-7J. In this case there is no

object (i.e., source of radiation) toward which the spin axis is pointed

and, as might be expected, the required attitude information is relatively

difficult to obtain.

Figure 8-5 shows a sensor configuration useful for such a

vehicle. S 1 and S 2 are infrared sensors which are fixed in the

vehicle and inclined equally to the plane normal to the spin axis. As

the spin of the vehicle causes a sensor line-of-sight to intersect the

earth, the sensor emits a pulse. Comparison of the pulses from the two

sensors gives an indication of the angle (the bank angle) by which the

spin axis is inclined to the horizontal plane; if the bank angle is zero,



Spin Axis

x
o

(Local Vertical)

!

sI g----

\

FIG. 8-5. SENSOR .CONFIGURATION FOR

BANK ANGLE MEASUREMENT.
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the sensor outputs will (ideally) be equal. Notice that this measure-

ment is not sufficient to establish the spin-axis attitude because these

sensors ere insensitive to rotation of the vehicle about the x axis.
o

Figure 8-6 defines the satellite axes in terms of 81, 82,

and 83, where 82 is the bank angle and e I will be referred to as

x b

x (l_cal Vertical)
o

Horizontal
Plane

Y
o

(Velocity el
Vector)

Yb

z b

(Spin Axis

82

e 1

z
o

(Orbit Plane Normal)

FIG. 8-6. DEFINITION OF SATELLITE ATTITUDE IN TERMS OF

THE BANK ANGLE 82 .

the yaw angle because it is a rotation about local vertical. In terms

of these angles:

s13 = -cos e3 sin 82 cos 81 + sin 83 sin 81

a23 = sin e 3 sin e 2 cos e I + cos e 3 sin e I

Of these angles only

sensors S1 and S2

O 2 can be measured directly.

are positioned along the -x b

However, if the

axis, the center
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of the output pulses will occur when 83 is zero. Furthermore, to a

good approximation 8 3 = _ . Therefore sin e 3 andvery COS
e 3' S '

can be generated by an on-board sine-cosine generator synchronized by

the outputs of the infrared sensors.

The problem of estimating 81 still remains; this might be

accomplished by adding solar cells to detect the component of solar

radiation along the spin axis (S 3 and S 4 of Fig. 8-5). Combination

of this data with knowledge of the position of the sun in (x , Yo' z )O O

coordinates (as provided by computations based upon orbital data and

the known motion of the sun in the ecliptic plane) will allow computa-

tion of 81 . However, this approach results in a very complicated system.

Another method which may be used to measure e I is the use

of aerodynamic pressure sensors in the positions S 3 and S 4 of

Fig. 8-5 [Ref. 8-8]. In theory, this is an ideal technique because it

affords a direct measurement of 81 . However, there are several

p_.+_..1_--_v._. _._ux_'_.........._. For example, the altitude at which such devices

may be used is limited by the rapid decrease in dynamic pressure as the

altitude increases (see Fig. 7-2). In addition, crosswinds can be a

significant source of measurement error.

This particular application is one in which an intermittent

control technique is probably preferable to one which operates continu-

ously. For intermittent control the bank angle sensor is sufficient

because the variation of the yaw angle can be predicted from that of the

bank angle by using the kinematic relationships which apply to the

attitude variables during the control-free periods. A detailed dis-

cussion of small-error intermittent magnetic control for this problem

is presented in Ref. 1-9.

C. SUMMARY

Realization of the magnetic control law requires an actuator and

appropriate measurements of the magnetic field, the transverse angular

velocities of the vehicle and the attitude errors. Of these factors,

measurement of the attitude errors is the most critical because the

character of the available attitude data depends strongly upon the
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desired orientation of the spin axis. The greatest difficulties arise

when the spin axis is to be directed toward a point not occupied by a

source of detectable radiation. In such cases a possible source of

attitude information is a strapped-down inertial reference system

[Rel. 8-9]. In theory this technique will, through integration of the

appropriate kinematic differential equations (Chapter If), provide the

necessary attitude data from knowledge of the components of vehicle

angular velocity and of the initial attitude. However, this scheme can

result in a complex mechanization (particularly in the case of large

attitude errors and a noninertial reference frame) and, because it

involves an open-loop system which is subject to many sources of inac-

curacy (e.g., integrator drift), this attitude reference system must be

periodically reset from some independent source of attitude information.
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IX. DESIGN CONSIDERATIONS

The first problem generally encountered in designing an attitude

control system for a spinning vehicle is that of selecting a control

configuration• Assuming that magnetic torquing has been chosen as the

means of modifying the total momentum of the vehicle, _here is still a

wide choice of damping mechanisms ranging from passive mechanical

dampers and active magnetic damping to gimbaled rotors which store the

component of momentum in the transverse plane of the vehicle [Refs. 9-1

and 9-2].

This discussion will be limited to the design of the continuous

magnetic control law (with active magnetic damping) which was developed

in Chapter III. First a design procedure, based upon the performance

analyses of Chapters V and VII, will be presented. A magnetic control

system is then designed for a specific application.

A. A DESIGN PROCEDURE

The large-error and small-error attitude control requirements for a

satellite are often unrelated; that is, large-error performance is

usually constrained by an upper limit upon the time required to remove

the initial attitude errors following separation from the booster,

whereas the small-error specification involves the maintenance of long-

term accuracy in opposition to disturbances.

For small values of G (the error saturation level of the control
s

characteristic), the saturating-proportional control characteristic can

be assumed to be a signum function for comvergence from large errors.

As shown in Chapter V, the rate of error reduction with a signum control

characteristic is approximated by

The coefficient M -/2r 3
e o

tude (see Fig. A-3).

*AV= 2r3 OAV"
o

(9.1)

is readily determined from the _atellite alti-

Assuming that the orbital inclination is specified,
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GAV contours such as those shown in Chapter V can be plotted. As a

first approximation, the minimum possible value of GAV for this partic-

ular inclination can be used; as an alternative the variation of Z and

5 can be determined from kinematical considerations and, plotting

vs. 5 on the contour chart, a more realistic estimate of the smallest

possible fiAV can be derived. With the above information, as well as

knowledge of the initial attitude error, U can be selected to remove
o

this error within the specified time.

Selecting U in the manner above, the parameters ff (the linear
o s

range of the control characteristic) and K R (which must be greater than

1/(l+k)_ for stability) are determined by small-error performance
s

requirements. If the rate gain is selected as

2

KR - (1 + k)_ (9.2)
s

the attitude error and transverse angular velocity will decay at approxi-

mately the same speed, as shown in the small-error performance analysis

of Chapter V.

The gain in the linear control region (K = U /o ) is selected to
o s

give the required long-term orientation accuracy. The minimum allowable

gain is determined by simulation of the averaged small-error equations

of motion (developed in Chapter VII) with the appropriate disturbances.

Finally, the large-error performance of the system can be verified

by simulation of the simplified equations of motion (see Chapter V).

B. AN EXAMPLE

As an illustrative example, a solar-pointing satellite in a circular

orbit will be considered. The vehicle will be assumed to have a spheri-

cal outer structure with a radius of three feet and the following moments

of inertia:

The largest possible moment of inertia ratio is, of course,

I
z

I
x
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I = I = 75 slug-ft 2
x y

I = i00 slug-ft 2 •

The spin rate is 0.i rad/sec.

The attitude control system will be required to reduce an initial

attitude error of 90 deg to 5 deg within 9 hours after separation from

the final stage, with acquisition assumed to begin with zero transverse
.

angular velocities. The small-error long-term accuracy requirement is

0.i ° .

An additional constraint is that during its lifetime (assumed to be

in excess of one year) the satellite will never enter the shadow of the

earth; that is, the orbit is to be fully sunlit for the entire year.

This somewhat arbitrary requirement restricts both the altitude and

inclination of the orbit.

i. Orbit Selection

The requirement for a full-year fully sunlit orbit will place

upper and lower bounds upon both the orbital inclination and the altitude.

The possibllity of the satellite passing through the earth's

shadow during any one orbit is determined by the position of the earth-

sun line relative to the orbit plane. For example, if the sun is in the

orbit plane it will certainly be occulted by the earth, whereas if the

sun is normal to the orbit plane no occultation can occur. Since the

reference axis z R is, in this problem, the earth-sun line, the first

of the above cases corresponds to _ = 90 ° , and the latter to _ = 0

or 180 ° .

,
For an application of this sort, the primary acquisition constraint is

usually dictated by the requirements of the power system (charged by

solar cells) and/or thermal control considerations. Thus (for the

example considered here), there is no penalty placed upon the time

required to reduce the error from 5 ° to 0.1 ° because, with errors of 5 °

or less, the power system and thermal control system will operate

normally.

148



The position of the sun relative to the orbit plane will vary

during the year as a function of _ (the displacement of the line of

nodes from Autumnal Equinox) and S (an angular measure of the time of

year). This relative motion is completely specified by the variation

of _ and 5. From Figs. 2-1, 2-3, and 7-3 the following relationships

can be derived:

sin 5 (sin _ cos S - cos _ cos B sin S) cos e i - sin 8 i sin _ sin S

cos 5 - (cos _ cos S + cos _ sin _ sin S)

(9.3)

cos @ = -[ (sin _ cos S - cos _ cos _ sin S) sin 8 i + cos ei sin _ sin S]

where _ = -23.45 ° and 6 is a constant determined by the altitude and

inclination of the orbit (see Chapter II):

cos 8.. (9.4)
o 1

Figure 9-1 illustrates the conditions under which the vehicle

To e

Sun x s

_ Vehicle _____

r=r°ex°/ ', _°:_ln_ex;_xs I

/ / / /
/

Shadow

FIG. 9-i. OCCULT GEOMETRY IN THE

SUN-EARTH-VEHICLE PLANE.

will be in the shadow of the earth. The plane of the page corresponds

to the instantaneous sun-earth-vehicle plane. Assuming a cylindrical

shadow, the occult condition is seen to be:
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R
le ×-I< -eo exs --r

o

and e • e
xo xs

<0 (9.5)

or, equivalently:

j,C >• e < -
exo xs --

(9.6)

D

With ezR = exs as required for sun orientation, the components of exs

in the (Xo' Yo' Zo ) coordinate frame can be expressed in terms of _,

5 and the orbital position _:

m m

e e = sin @ cos (_ - 5)
xs xo

m

e e = -sin @ sin (C_ - 5) (9.7)
xs yo

m m

e " e = cos @ .
xs zo

In terms of _, 5, and £_ the occult condition is

sin 0 COS (£X - 5) _<- - (9.8)

From this result it is seen that the condition for no occultation during

an orbit is

sin _ < - (9.9)

where sin _ is always positive with @ as defined in Chapter II.

This condition upon Z must be maintained throughout the year (i.e.,

for all values of S) if full-year fully sunlit operation is desired.

The range of @ can be restricted by constraining the motion

of _. In particular, if _ = S-x/2, the relationships of (9.3) become:*

The alternate condition _ = S+_/2

results•

will give completely equivalent

i_0



cos 0 = [cos _ + (1 - cos _)cos 2 S]sin e. - cos e. sin _ sin S
1 1

sin
-[cos _ + (1 - cos _)cos 2 S]cos e. - sin e. sin _ sin S

1 1

cos 5
- (i - COS _) sin S cos S

(9.10)

With this constraint upon _:

min(cos 2 0) =

S

cos - 8 i + ,

0 ,

cos + 8 i ,

_<e <--- i--2

• >x -_ei < _ or 81

_<ei<,_- _
(9.11)

Condition (9.9) can be rewritten as

(9.12)

for comparison with (9.11)•

The imposition of _ = S-n/2 requires that

related that _ = S [see expression (9 4)] *• . Since

the required inclination is given by:

COS @. =
1 2

0.00164(R /r ) w
e o o

r and 8. be so
o 1

is a constant,

(9.13)

Notice that x/2 < 8. < _ is required so that the line of nodes will

advance in the orbit plane•

Maintenance of 6 = S-_/2 will probably require active control of the

satellite altitude to correct for launch errors and perturbations of the

orbit.
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From (9.11) and (9.12),

relat ionship:

O. is further restricted by the
1

)/r lc°s2 _ + ei -2 > (9.14)

These conditions are shown graphically in Fig. 9-2. For year-long fully

sunlit operation the orbit parameters must lie on the solid curve

(_ = S) and be above the dashed curve. Thus, the range of orbits is

bounded as indicated.

For the design example treated here, the orbit will have an

altitude of 1000 nautical miles with an inclination of 103.9 deg to

the equatorial plane. The corresponding variation of 0 and 8 is

shown in Figs. 9-3 and 9-4. The maximum value of 0 is approximately

37.5 deg whereas the minimum value for which occultation can occur at

this altitude is 39.2 deg.

2. Preliminary Control System Design

The maximum control level, Uo, is specified by the large-error

convergence requirement. At an altitude of 1000 nautical miles,

M /2r 3 = .075 gauss. Reduction of the attitude error by 85 deg in nine
e o

hours requires an average convergence rate of _AV = -4"58×10-5 rad/sec.

Figure 9-5 shows contours of GAV for 8.1 = 103.9 deg upon

which is superimposed the variation of _ and 5 for _ = S-x/2.

GAV is clearly always greater than 1.6. Using expression (9.1) and the

above data (and the conversion factor 6.86><10 -6 mentioned in earlier

chapters):

U > 55.7 amp-ft2/ib-ft-sec
0 --

Since this result is based upon an estimate of the average convergence

speed (not the worst case), U = 100 amp-ft2/ib-ft-sec will be chosen
o

as a trial design value.
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l

FOR _ = S--_/2

Selection of _ will be based upon keeping the steady-state
S

error of the disturbed system less than 0.1 deg. However, it is desired

to have _ large enough that control saturation cannot occur during
S

steady-state operation, but not so large that the large-error perform-

ance deviates noticeably from that with a signum control characteristic.

This rule of thumb can be used to choose a preliminary trial value of

. Neglecting the rate-dependent terms in _ (which will usually be
s

quite small during steady-state operation)

IOJ < IBxRC231 + IByRCl31
(9.15)

for small errors. Setting c13 and c23

accuracy requirement (,e) and BxR and

equal to the steady-state

By R equal to 2Me/r3:o
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Ioi_< *e
gauss (9.16)

In this case the bound is .001 gauss. For the preliminary design

= .01 gauss will be selected, giving a linear range (in attitude
s

error) of at most one deg.

With the inertias and spin speed specified above, the rate gain

(K R) must be greater than 7.5 sec . In accordance with the discussion

of the previous section K R = 15 sec will be chosen.

These preliminary control system parameters may be acceptable,

or it may be necessary to modify them based upon simulation results.

3. Simulation Results

Before evaluating the disturbed motion, realistic values must

be selected for the components of center-of-mass -- geometric-centroid

offset and the components of residual magnetic moment. In addition, the

components _ and _ of the inertial rate of the (XR' YR' ZR)
x y

coordinate frame must be found.* It should be noted that at this

altitude aerodynamic torques are negligible.

A reasonable choice for £x' £y, and _z is two inches.

According to Bandeen and Manger [Ref. 9-3], TIROS I had a residual

2
magnetic moment along the spin axis on the order of one amp-m For

this discussion mx, my, and mz will be assumed to be 3.28 amp-ft 2

approximately one-third of the level reported in Ref. 9-3.

The required components of _R, _x' and _ can be computed
y'

as a function of S by noting that the only contribution to these two

rates is Se where z is the axis normal to the ecliptic plane;
zi i

$
For small errors the only effect of a nonzero _ is to limit the

time for which c12 and c21 can be assumed to b_ zero (see the

kinematic equations of Chapter II). Assumption of c12 = c21 = 0 means

in this case, that the inertial spin rate is modified-By _, since

the spin rate has been assumed to be _ relative to the (Xl' Yl' Zl)

$ a >> _.coordinate system. This effect is negllgible bec use w s
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since ezi is normal to exs = ezR' the zi axis lies in the (XR, yR )

plane. However, it is convenient, in this case, to assume (pessimisti-

cally) that _ = _ = S = 2XI0 -7 rad/seco
x y

Using the above data, and u = .01 gauss as specified by the
s

preliminary design, the small error averaged equations of motion (see

Chapter VII) were simulated digitally to evaluate system performance.

Figure 9-6 shows the steady-state forced response in this case.

Clearly more gain is required in the linear region. Figure 9-7 presents

the steady-state response for _ = .005 gauss. It should be no£ed that
s

in all cases the total transverse angular velocity was no more than

-6
5XI0 rad/sec and, therefore, contributes negligibly to the total

_i and _ X2 are extremely goodattitude error; that is, c13 c23

approximations•

The foregoing results indicate that the steady-state peak error

amplitude is very dependent upon the time of year.. This fact is further

illustrated by Fig. 9-8. It is particularly interesting that for

-_ : _._ dcg _t_ = _,°_.0o, 5 - SS.0 _) the peak ampilrude is O.O0170

radians, while for S = 105 deg (_ = $7.0 °, 5 = 92.0 ° ) the peak

amplitude is .00153 radians. This high sensitivity to the value of 5

can be explained by observing that both the magnetic field components

(upon which the coefficients of the differential equatiorus depend) and

the gravity gradient torques involve terms at twice orbital frequency

with phasing which is dependent upon 5. It is not unexpected that the

relative phasing of the periodic coefficients and the (synchronous)

periodic forcing terms will affect the amplitude of the response.

Based as they are upon the antilted dipole model of the magnetic

field, these results may be slightly optimistic. For example, at

S = 75 ° a tilted dipole model could result in errors slightly in excess

of 0.i ° at times when the magnetic dipole is, due to rotation of the

earth, tilted away from the earth-sun line. This would signal a further

decrease in
s

As usual, the untilted dipole model of the earth's magnetic field is

employed.
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On the other hand, at times when the magnetic dipole is tilted

toward the earth-sun line these results may be somewhat pessimistic.

Figures 9-9, 9-10, and 9-11 show the large-error response based

upon signum control of the simplified equations of motion. On each

figure the time required to move from point _ to point _ is approxi-

mately one-half orbit period (about one hour). Reduction of the attitude

error from 90 deg (h2+h 2 = l) to 5 deg is easily accomplished within
x y

the allowed nine hours. The slowest of these cases is S = _/2, as

predicted by Fig. 9-5.

4. Actuator Design

Chapter VIII presents a design procedure for air-cored actuators

based upon specified values for the maximum available voltage (v), the
m
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FIG. 9-9. LARGE-ERI_0R TRAJECTORIES FOR S = 0

AND S = _.

h x

FIG. 9-10. LARGE-ERROR TRAJECTORIES FOR S = _/2.
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hy

FIG. 9-11. LARGE-ERROR TRAJECTORIES FOR S = 3_/2.

coil radius (R),
c

maximum required magnetic moment is the product of

momentum, H . For this problem
s

m = 1000 amp-ft 2
m

and the maximum required magnetic moment (m).
m

U and the spin
o

The

R = 3 ft
c

v = 28 volts
m

The value chosen for

will be

v is typical of many satellite power systems.
m

From expression (8.3) the resistance per unit length of the wire

R v
c m

2m
m

= 0.042 ohms/ft

Using AWG-24 aluminum wire, p = .041 ohms/ft which is close enough to

the design value. The weight per unit length is, from the table of
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Chapter VIII, 3.83×10 -4 ibs/ft. From the above data, and expressions

(8.5) and (8.6), the weight and maximum power are:

W = 0.00720 • N ibs
c

103
P = .992 X .--::- watts .
m

c

The current through the wire is limited to JR,

thermal considerations. Then

m
m 35.4

N c _ _R2iR iR

by either power or

N
c

The fusing current the wire in question is approximately 20 amperes.

We may certainly consider 0.I amperes as a safe value for iR. Choosing

= 354 turns:

W = 2.55 ib

P = 2.80 watts .
m

It is of interest to consider the power drain during steady-

state operation. Figure 9-12 shows u(t) and u2(t) for _ = .005
s

gauss and S = 75 ° . From expressions (8.2) and (8.4) the power, as a

function of u (= m /H ) is:
c s

(9.17)

For this design the peak power drain in steady-state operation is

18.2XI0 -4 watts and the average power drain is 6.3XI0 -4 watts. Clearly

the steady-state power drain is negligible. In many cases even the

relatively large acquisition power drain will not add to the required

capacity of the power supply because many power-consuming devices

(e.g., the experiments) may not be activated until acquisition is

complete.
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The same required peak magnetic moment could be generated using

a ferromagnetic torquer. However, a residual magnetic moment of even

one percent of the peak magnetic moment will in this case be quite

significant, corresponding to 40 percent of the maximum value of u

occurring during steady-state operation.

C. SUMMARY

This chapter has presented a design procedure for continuous

magnetic attitude control of spinning satellites. This approach has

been demonstrated by designing such a control system for a realistic

application. For this example, the primary power and weight require-

ments are imposed by acquisition constraints; the power required for

steady-state operation is negligible. If, for instance, the satellite

can be separated from the booster in such a way that the initial atti-

tude error is significantly less than the value (90 °) assumed here_ the

weight of the coil can be reduced considerably; withn,:t _Vfecting t_h_

small-error performance.

The results of this chapter also give a strong indication of the

practical feasibility of controlling the attitude of a general spinning

vehicle, in an orbit "sufficiently near the earth, by means of the

control law developed in this study.* Although the application con-

sidered in this chapter was not chosen as a critical test of the mag-

netic control scheme, neither was it selected to show magnetic control

in a favorable light, except perhaps from the point of view of mech-

anization as indicated in Chapter VIII. Indeed, it is reasonable to

conjecture that the orbital parameters of this mission could have been

changed markedly without affecting our ability to choose control system

In this context "sufficiently near" orbits are those for which (1) the

dipole magnetic field model is a reasonable approximation (Appendix A)

and, (2) the magnetic field is intense enough to provide sufficient

control authority to satisfy the requirements of the specified mission.
The results presented in this dissertation indicate that it is reason-

able to consider attitude control for spinning satellites at altitudes

as great as 10,000 nautical miles. At higher altitudes simulation studies
using a more realistic magnetic field model are advisable.
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parameters to achieve the required control accuracy. Of course, the

cost of control would, in this event, be altered.

This is not to say that cases cannot be found for which the feasi-

bility of magnetic control would be doubtful. We might, for instance,

alter the example of this chapter by making the orbit equatorial. With

the untilted dipole model, the system would be uncontrolled as established

by the stability analyses of Chapter IV; even with the tilted dipole

model control authority would be limited.

In spite of the existence of cases for which magnetic control is

impractical, the results of this and preceding chapters indicate strongly

that this magnetic control system is worth considering for a wide variety

of missions.
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X. CONCLUSIONS

A. SUMMARY OF IMPORTANT RESULTS

i. Theoretical Feasibility of Magnetic Attitude Control of Spinning

Vehicles

The primary goal of this study was the demonstration of the

theoretical feasibility of control of the attitude of a general spinning

satellite using control torques generated by the interaction of a

current-carrying coil with the earth's magnetic field. This phase of the

study was based upon the following major assumptions:

i. The vehicle was assumed inertially symmetric with respect to the

spin axis (I > I = I ).
z x y

2. The orbit was assumed to be circular.

3. Nodal regression was neglected (this is equivalent to assuming a

spherical earth).

4. The desired spin-axis direction was assumed to be fixed in inertial

space.

5. The magnetic field was approximated by a dipole model (Appendix A).

Under these conditions, and with a specific control law developed

in %his dissertation (Chapter Ill), theoretical feasibility has been

demonstrated for any orbit parameters (altitude and inclination) and

desired pointing direction, for the tilted dipole model of the earth's

magnetic field. The control law has, moreover, been shown to be

asymptotically stable for arbitrarily large initial errors and transverse

angular velocities. These results were obtained by using Lyapunov's

second method and represent one of the few instances in which this

technique has been successfully applied to nonlinear, time-varying

differential equations.

It is particularly interesting that use of the untilted dipole

model of the earth's magnetic field (which assumes the geomagnetic and

geographic polar axes to be aligned and is, therefore, much simpler than

the tilted dipole model), yields pessimistic stability results as a direct
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result of the simplification of the magnetic field components• For

example, with the untilted dipole, B (one of the two magnetic field
yR

components normal to the desired pointing direction, zR) is zero for

all time if the orbit is equatorial• With this field model, the feedback

control law is ineffective in such orbits, and the system is not

asymptotically stable. However, with the tilted dipole model, the

geomagnetic and geographic equatorial planes are not coincident, and the

vehicle cannot remain for all time in the geomagnetic equatorial plane

(except for synchronous orbits--which occur at altitudes where the dipole

models of the earth's magnetic field are invalid) so that B • cannot
yR

be always zero.

Major limitations of this stability analysis are the assumptions

of a circular orbit and a dipole magnetic field model. However, the

results of the stability analysis and the character of the Lyapunov

function employed allow us to conjecture with a high degree of confidence

that asymptotic stability in-the-large exists for elliptical orbits and

the exact environmental magnetic field.

2. Control Law

A major contribution of this thesis is the development of a new

and practical feedback control law for magnetic attitude control of

spinning spacecraft. This control law specifies a control of the form

u = _(o) (hence, a coil current proportional to _(o)) where

O = gp+KROR, o being a function of the attitude error and o R dependingP

only upon the transverse components of the total angular velocity of the

vehicle. (Both terms have coefficients depending upon the measured

environmental magnetic field.) Thus, this control law provides active

magnetic damping as well as position control. As a result of the stability

analysis, the amount of damping (as characterized by the gain K R)

required for asymptotic stability has been determined as a function of the

vehicle moments of inertia and its spin rate, _ :
s

1

KR > (1 + k)_
s
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with k defined by

I - I
Z X

k-
I

X

where I is the moment of inertia about the nominal spin axis, and I
Z X

is the moment of inertia about any transverse axis of the axially

symmetric vehicle.

A major unanswered question is that of the feasibility of com-

bining •a magnetic control of the form u = _(gp), for attitude control,

with a passive mechanical damper for damping of the transverse angular veloc-

ities. Intuitively such a combination is practical if the damper has

sufficient authority.

3. Performance Evaluation

Using a combination of Krylov-Bogoliubov averaging techniques

ana other heurlstlc approaches, estlmates nave ueen aevelopea _or both

the large-error and small-error undisturbed performance of the magnetic

control law. These estimates show explicitly the influence of the

altitude, the orbital inclination, and the nominal pointingdirection

upon the response of the undisturbed system. These results are very

useful for preliminary selection of the free parameters in the magnetic

control system.

In order to evaluate the effects of disturbances upon the per-

formance of the magnetic control law, similar techniques have been applied.

Disturbances considered are inertial motion of the axis defining the

desired spin-axis direction (a kinematic effect), and external torques

due to aerodynamic pressure, solar radiation pressure, gravity gradient,

and residual vehicle magnetic moments. In this case, no closed form

result was obtained; however, the resulting small-error averaged equations

of motion can be integrated numerically in a time much shorter than that

required to integrate the exact equations of motion, This results in a

considerable saving, both by reducing the magnitude of the simulation

required and by reducing the computer time required for each solution.

The validity of these averaged equations of motion (as well as that of the
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estimates of the undisturbed motion} has been confirmed by extensive

analog ond digital simulation.

A reasonable performance criterion for the large-error (acquisi-

tion) performance of an attitude control system is the speed of response.

The large-error performance of the feedback control law developed in this

dissertation has been shown (with u = U sgn if) to compare favorably
o

in this respect with minimal-time control programs derived by applying

Pontryagin's maximum principle.

4. Practical Feasibility of Magnetic Attitude Control of Spinning

Vehicles

Practical feasibility involves both considerations of mechaniza-

tion and the ability of the control system to maintain the required

steady-state accuracy in the face of environmental disturbances. In each

of these areas, practical feasibility depends strongly upon the specific

requirements of a particular vehicle, including the orbital altitude, the

orbital inclination, the required pointing direction, and the level of

accuracy required.

The most critical mechanization problem is that of measuring the

spin-axis attitude, the greatest difficulties arising when the spin axis

is to be directed toward a point not occupied by a source of detectable

radiation.

Aside from sensor considerations, the major limitation upon the

applicability of this control system occurs when the coil weight and/or

power required to achieve the specified performance become unacceptable.

The cases where this problem is most likely to occur are those in which

the control torque available is severely limited throughout the orbit

by either the magnitude of the magnetic field (due to high altitudes--

i0,000 nautical miles or more) or its direction (due to low orbital

inclinations--30 deg or less). It should be noted that the altitude

limitation concerns the magnitude of the field, rather than deviations

of the field from that of a magnetic dipole (due, for example, to the

effecZ of the solar wind). Indeed, as was seen in comparing the stability

properties :derived using a tilted dipole model with those obtained using

an untilted dipole mDdel, additional frequencies in the magnetic field
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model (which can be present at both low and high altitudes--see Appendix

A) can be expected to improve the stability properties of the control

system.

Other factors which potentially limit the applicability of this

control law are the level of accuracy required and the character of the

disturbances (which, for missions requiring extremely high accuracy,

include such effects as sensor misalignments and magnetometer interference).

Unfortunately, owing to the time-varying coefficients in the equations

of motion, it has not been possible to establish general conclusions

regarding the attainable accuracy. In the final analysis, each case

must be treated individually, using simulation techniques, as has been

done for a specific application in Chapter IX.

B. RECOMMENDATIONS FOR FUTURE STUDIES

i. Extensions of this Study

There are several directions in which the results of this study

may be extended. Among these are consideration of vehicles in elliptic

orbits, extension to vehicles which do not possess axial inertial

symmetry, and use of the position control law developed here in combina-

tion with various mechanical dampers. In each of these cases, the

critical problem is that of demonstrating stability. These extensions

are definitely nontrivial. However, it appears, intuitively, that these

suggested studies would not yield negative results.

2. Fully Stabilized Vehicles

Although magnetic attitude control of fully stabilized vehicles

has received considerable attention, most of the published results are

based upon simulation studies and intuitive arguments. The problems of

large-error convergence and small-error stability have not been treated

rigorously. The problems appear to be even more formidable than those

associated with magnetic control of spinning vehicles, and the magnetic

control of fully stabilized satellites offers a fertile area for future

investigations.
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APPENDIX A. DIPOLE MODELS OF THE EARTH'S MAGNETIC FIELD

The analytic developments of this study are based upon dipole models

(tilted and untilted) of the earth's magnetic field. The magnetic field

is assumed to be produced by a single magnetic dipole located at the

geographical center of the earth. Although more accurate models are

available, they are generally not employed in analysis owing to their

complex nature.

The appendix derives a dipole model for the earth's magnetic field

in terms of the geometry defined in Chapter II. Following the derivation

is a qualitative discussion of the degree to which the actual magnetic

field departs from the dipole model.

A. DERIVATION OF DIPOLE MODELS

In the (x , Ym' z ) coordinate frame of Fig. A-I the dipole momentm m

of the earth is [Ref. A-l]

B

M = -M e
e e zm

n m

e e = e
z 691 r xo
m

• e02

Vehi c I e

 en er

\1

x
m

FIG. A-I. SPHERICAL COORDINATE AXES.
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where M = 2.845X1021 gauss-ft 3. In the spherical coordinate frame of
e

Fig. A-I the magnetic field is [Ref. A-l]:

= [(2 sin el)e - (cos el)eel].
r

\rj

(A.I)

The (Xm' Ym" z ) coordinates of the figure are defined with the zm m

axis along the effective north magnetic pole and the x axis in the
m

geographic equatorial plane, as shown in Fig. A-2. The transformation

from the spherical set to (x , Ym' z ) is:m m

e
xm

e

ym

zm

-- m

-sin 8 2 -cos 8 2 sin 81 cos 8 2 cos 81

cos 82 -sin 8 2 sin 81 sin 8 2 cos 81

0 cos O 1 sin 81

m

_82

eBl

_r

(A.2)

The components of the magnetic field in the (Xm' Ym' Zm ) coordinate

frame are, then:

B
i xm

M
e

B =
ym 3

r

o

B
zm

3 cos 82 sin 81 cos 81

3 sin 8 2 sin 81 cos 81

3 sin 2 81 - 1

(A.3)

which may also be written:

--%

B
xm [

3G
xm

M

e 3(e
3 ym

r
o

3 (e
Zig

u

" e )(e • e )
r zm r

" e)(e e)
r zm r

- )2• e - 1
r

(A.4)
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The transformation of these components into the (Xo' Yo' Zo ) frame

of Fig. 2-1 proceeds through the coordinate frames of Fig. 2-1 and

Fig. A-2. Notice that the rotations O_e, A, and 13 are about the

same axis (z). Therefore, with
e

A
_=_ +A-13

e
(A.5)

the field components in

= -sin

BY°I 0

zoJ _

where

All = cos

(Xo' Yo' Zo ) coordinates are

sin _ 0 All AI2 AI3

cos _ 0

1

A21 A22 A23

A31 A32 A33
-- w

(A.6)

AI2 = -cos e sin

AI3 = sin ¢ sin

= sinA21 cos Oi

A22 = cos e cos 8i cos _ + sin 6 sin 8i

A23 = -sin e cos 8i cos _ + cos • sin Oi

A31 = -sin 8 i sin

A32 cos _ + sin £ cos 8.= -cos £ sin Oi 1

A33 = sin e sin Oi cos _ + cos e cos Oi
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Note that e
xo

m

e .
r

Then, if

I
_B

xo

i

i Byo

C11 C12 C13

= C21 C22 C23

031 C32 C33

B
xm

B
ym

B
zm

xm

B
ym

B
zm

(A.7)

it is clear from (A.4) that:

xm

B
ym

Bzm

M
e

= --_
r

o

m

3Cii C13

3C12 C13

2
3C13 -1

(A.8)

Therefore :

m

B
xo

B I
yol

B
zo

However, the matrix

M
e

m n

3
r

o

#-

CII C12 CI C1]

I i3C13 C21 C22 C23 CI.¢

LC31 C32 C33J C1_

J

C13

- C23 •

33

(A. 9)

is an orthogonal transformation matrix with the

property

Ii, i = jCilCjl + Ci2j2 + CisCj3 = 0, i ¢ j

The components of B in (Xo' Yo' Zo ) coordinates are simply:

(A.10)
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B 2C13xo

M

= e
By o -'-'_ --4223

r
o

Bzo -C33

(A.II)

Forming C1. 3, C23, and C33 from expression (A.6) and using the

appropriate trigonometric identities:

B
xo

e
3 cose sin8. sin_ -[ (l+cos@.)sin(CZ-_) - (l-cosgi)sin(C_+_)]sinl 1

r
o

_ e
By ° = cose sinS. 1

o

cos_ +
1

• )cos(C_-_) - (1-cosei)cos(cz+_)]sine _3[ (l+c°se 1 )

e - sin6 sin@. cos
B - cos6 cos9 i

ZO
J

O--

(A.12)

The coefficient M /r 3 varies with altitude as shown in Fig. A-3.
e o

The magnetic field can be expressed in the nodal coordinate frame

(Xn' Yn' Zn ) of Fig. 2-1 as:

Bxn = - [ (d I- d3)sin_ + 3dlsin'(2_+ _) + 3d3sin(2£z-_) + 3d5sin2_ ]

By n = - [ (dl+ d3)cos_ - 3dlCOS(2[2+_) - 3d3cos(2_Z-3_) + d 5- 365cos2_]

B = _ (d7+ d8costa ) (A.13)
zn

where
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= 1dI sin 6 sin 2 _ 8i

21
d3 = -sin £ cos _ 8i

d 5 = cos 6 sin 8 i

d 7 = - 2 cos £ cos 8.1

d 8 = - 2 sin £ sin 8.i "

Notice that, since 6 _ ii °, the dominant time-varying terms in (A.13)

are those at twice orbital frequency. Since the secondary terms vary at

frequencies whose ratio to the orbital rate can be irrational, the

magnetic field components are, in general, almost periodic functions.

In many cases useful results can be obtained by employing the less

refined dipole model which results from considering the earth's magnetic

dipole to be aligned with the spin axis of the earth (6 = 0). For the

untilted dipole model, (A.13) reduces to:

B
xn

B =
yn

B
zn

3 sin _ sin @.
1

(i - 3 cos 2_) sin 8.
1

- 2 cos O.
l

(A.14)

In the (XR' YR' ZR) coordinate frame of Fig. 2-3 (with _' = 0),

untilted dipole model yields

= + 2 sin 0 cos 8
BxR sin 5 + 3 sin (2CI - 5)]cos _ sin 8 i

(2(2 - 5)]sin e:_

9By R = os 5 - 3 cos

:
BzR \2r o / k

5 + 3 sin (_ - 5)]sin _ sin @.
l

the

(A. 15)

- 2 cos _ cos 8_
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The angles G , _, and G,
e

dipole model, are time varying.

all of which appear in the tilted

For circular orbits

and

= _ t + _ (A.16)
o o

= _t + _ (A.17)
o

where _ is given in expression (2.1).

The. angle _ is the angular displacement from the Autumnal Equinox
e

of the intersection of the prime meridian with the equatorial plane.

In terms of Ts, the apparent solar time at Greenwich (in hours),

O_ (T) = _ T + G
e e s eo

where _ = 15 deg/hour and G is the value of G at T = 0
e eo e s

(midnight). Because at midnight the sun must be over the meridian 180 °

from the prime meridian, it can be shown that

a = arctan (cos _ tan S)
eo

where _ = -23.45 ° and S is the displacement of the sun in the ecliptic

plane from Vernal Equinox (see Fig. 7-3). The angles _ and S must
eo

be in the same quadrant.

B. VALIDITY OF DIPOLE MODELS

We may regard the magnetic field at any point in space as being

composed of a stationary term (one which depends only upon the location

of the point in question in geomagnetic coordinates) and a nonstationary

term (one which depends upon time as well as upon the geometry).

The stationary field is that part of the magnetic field which we

have attempted to represent by a magnetic dipole located at the center

of the earth. The model derived above is, at best, a first approxima-

tion. According to Barrels, the horizontal field component measured in

some regions on the surface of the earth differs by as much as O.1 gauss
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(approximately 30_) from the values given by the centered dipole model

[Ref. A-2]. A somewhat better approximation is given by the eccentric

dipole model, a model which assumes the source of the magnetic field to

be a single dipole displaced from the geometric center of the earth

[see Ref. A-3]. The most exact model for the stationary component of

the earth's magnetic field is based upon matching the gradient of a

high-order potential function to the magnetic field. The results of a

4S-term harmonic analysis of the earth's magnetic field are discussed

briefly in Ref. A-3. Even this model fails at high altitudes (5 to i0

earth radii) due to distortion of the geomagnetic field by the solar

wind [Ref. A-4].

The nonstationary field, which is not represented in the dipole model

of the preceding section, is composed of secular terms which require

many years to produce a noticeable change, and more significant terms

which have periods ranging from less than a second to several years.

Most of the short-term variations arise from interactions of the g_u-

magnetic field with the solar wind. A typical level for this disturbance

field (observed at 1,he surface of the earth) is several milligauss;

hence, ±n near-earth orbits, these transient variations are much smaller

than the main field.

C. USE OF THE UNTILTED DIPOLE MODEL FOR ANALYTICAL STUDIES

The primary motivation for using the untilted dipole model of the

earth's magnetic field rather than the more accurate tilted dipole model

is convenience of analysis [compare, for example, expressions

(A.13) and (A.14)]. But the existence of this very strong motive does

not, of course, mean that the results obtained with this approximation

will be valid.

The stability analyses presented in this dissertation (Chapter IV)

employ both the untilted and tilted dipole models. It is particularly

interesting that the untilted model gives pessimistic stability results,

and that this pessimism is directly due to the simplification of the

expressions for the magnetic field components.
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The effect of employing the untilted dipole model in the perform-

ance estimates is another matter. To consider this problem it is useful

to cast the tilted dipole model in a form comparable to the untilted

model of expression (A.14). Define 8 as the (time-varying) inclination
m

of the orbit plane to the geomagnetic equatorial plane and the G as
m

the angle from tbe orbi plane--geographic equatorial plane line of nodes

to the orbit plane--geomagnetic equatorial plane line of nodes, as shown

in Fig. A-4. The tilted dipole model, defined here relative to the

Orbit Plane

Magnetic

Equatorial Plane

x Geographic
Z 0

o Equatorial

Plane

m

x
m

FIG. A-4. DEFINITION OF 8 AND _ .
m m

geomagnetic equator, takes the same form as the untilted dipole defined

relative to the geographic equator, when resolved in the (Xo' Yo z )' o

coordinate frame. That is:
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. a

B
xo

M
e

B = - --_
yo

r
o

B
zo

m m

2sin e sin (a - _m )
m

-sin 8 cos (a - a )
m m

- cos 0
m

(A.18)

which can be derived from (A.12) by letting e be zero, and making

0 and a _ a - a . Since (A.18) and (A.12)
the substitutions Oi m m

must be identical, the following identities must apply:

sin O sin a _ - sin e sin
m m

sin 8 cos a _ - sin c cos 8. cos _ + cos e sin O.
m m l 1

(A.19)

cos 8
m cos E cos Oi + sin £ sin 0i cos

In the (Xn' Yn' Zn ) coordinate frame:

B
xn

M
__S_e

By n = 2r 3

B
zn

w -

o

+ 3 sin (_ -a )] sin 0[-sin a m m m

- 3 cos (2_ - a )] sin 0[ cos _m m m

- 2cos O
m

(A.20)

which reduces to expression (A.14) if _m = 0 and Om = Oi, as is the

case for c = 0. This result can be put into a form which is more useful

for our purposes:

B
xn

M
e

B =
yn 2r 3

o

B
zn

(sin O
m

(sin O
m

cos a m) (3 sin 2CZ) - (sin em sin am) (i + 3 cos 2_z_

cos a )(1 - 3 cos 2_) - (sin 8 sin (%)(3 sin 2_
m m m

- 2 cos O
m

(A.21)
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These magnetic field components depend on time due to orbital motion

of the vehicle as well as through the variation of _, where _ = _ +&-_.
e

Since _ << _e' the coefficients given in (A.19) vary with a period

very close to one day. The terms concerning 2_ vary, of course, at

twice orbital frequency.

To evaluate precisely the performance of a magnetic attitude control

system with this tilted dipole model we must have knowledge of not only

the initial orbital position of the vehicle, but the values of the

coefficients sin 8 sin _m, sin e cos _ , and cos O as well.m m m m

As shown earlier, to specify these coefficients explicitly we must know

the initial value of _, the time of year (i.e., the angle S) and the

initial apparent solar time at Greenwich. This is reasonable for a

specific mission because values for these parameters may be available.

For a general study, these coefficients must be assumed to be

arbitrary (within their allowable range of variation as defined by

(A.19) with e _ ll°). Using simulation techniques it is possible

(albeit prohibitively time consuming and expensive in some cases) to

evaluate the performance for all possible values of _m and Om.

Another approach for general performance studies, such as the

estimates developed in Chapter V, is to consider, at least for low

orbits, replacing the coefficients of (A.21) by their average value

(over a day). This will (heuristically) give an estimate of the

It t'

average performance. Then

ave(sin O sin _ ) = 0
m m

ave(sin em cos m5) = cos ¢ sin e.l

ave(cos em) = cos e cos e.l
_t

and
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3 sin 2_ sin 8.
1

(1 - 3 cos 2_) sin 8.
1

- 2 cos 8.
1

(A. 22)

Notice that this agrees with expression (A.14) except that all components

are attenuated by cos e _ .982. It appears, then, that using the
%, 1'

untilted dipole model yields, to a good approximation, the average

(over a day) performance of the magnetic control system. Of course,

during any day there will probably be orbits for which the performance

is better and other orbits for which the performance will be worse.

However, owing to the small angle (approximately 11 °) between the geo-

graphic and geomagnetic polar axes, these performance extremes can be

expected to deparL uiily slightly _,,,_--- _.._ "_._.-_°_"_- p_n_m_n_e........
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APPENDIX B. INTERMITTENT MAGNETIC ATTITUDE CONTROL OF SPINNING VEHICLES

The study presented in the body of this report is concerned with

continuous magnetic control of the attitude of a spinning satellite.

For small errors, intermittent control is an alternative. The primary

advantage of intermittent control is that continuous measurement of the

attitude and magnetic field variables is not required. Furthermore, it

is sometimes possible to mechanize an intermittent control law with less

attitude information than is required for continuous control, because

the motion of the spin axis between attitude corrections admits to

kinematic constraints [Refs. 1-9, i-ii]. A major limitation of intermit-

tent control is the difficulty in maintaining a high degree of accuracy.

The discussion of intermittent magnetic control which follows is an

adaptation of the results presented in Ref. 1-9. The attention of

Ref. 1-9 is limited to a specific mission--that of orienting the spin

axis normal to the orbit plane. However, Ref. 1-9 includes a detailed

discussion of mechanization for this specific application. The follow-

[ng development generalizes the control law development of the reference

to arbitrary missions, but implementation is not considered. It is

assumed (as in Ref. 1-9) that the satellite contains a passive damper

of sufficient authority that the simplified equations of motion (Chapter

II) can be employed.

The simplified equations of motion are presented in polar form (for

inertial reference axes) in expression (5.3) of Chapter V. For small

attitude errors:

= -(By R

k_ = (By R

cos k - BxR sin k)u

sin k + BxR cos k - BzR_)U

(B.I)

xy

(x R, YR )

be the projection of the normalized momentum vector in the

plane of Fig. 5-3. With small attitude errors

h _ _; COS
X

h _ _ sin k
Y

h _i
Z
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and

Figure B-1 shows the geometrical situation prior to an attitude

hy (0)

YR

Spin-Axis Attitude

at t = 0

I

x R

h (0)
x

FIG. B-I. INTERMITTENT CONTROL GEOMETRY.

correction. Neglecting motion of the reference frame and disturbance

torques over a half orbit (the primary period of the magnetic field

components), h and h will be constant.
x y

Attitude corrections will be made by application of u = +U for a
-- o

short period of time (for example, in Ref. 1-9 each correction must be

accomplished during no more than nine deg of the vehicle's orbital

motion). The need for an attitude correction is indicated when the

attitude error _ exceeds a preassigned threshold.

Assuming that a correction is required, it is necessary to decide

when during the subsequent half orbit to initiate the correction, and

to select the level and direction of u. The last two questions are the

easiest to answer. The control level, %, is specified by the attitude
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increment desired. This increment must be greater than the maximum

incresse in _ (due to disturbances) which can occur during a half

orbit, and less than the threshold level (to avoid overcorrection).

The sign of u is specified by the obvious requirement that _ must

be negative at the beginning of a correction.

One method of selecting the time of correction initiation is that of

detecting the time at which IBy(t)hx(0)-Bx(t)hy(0) I is a maximum.

Application of u at this time will maximize the initial rate of

decrease of the attitude error.

Another technique, probably more easy to implement, is based upon

requiring that the initial motion of the spin axis be toward the origin--

that is, _(0) = O. Imposing this constraint yields, from (B.I):

ByR(0) sin )_(0) + BxR(0) cos _(0) - BzR(0)_/(0) = 0 . (B.3)

Or, in terms of h (0) and h (0):
x y

ByR(0)hy(0) + BxR(0)hx(0) - BzR(0)[h2(0) + h2(0)]y = 0 . (B.4)

To summarize, if $ is greater than the threshold level and condition

(B.4) is satisfied, apply a control

u = Uo sgn [ByR(0)hx(0) -BxR(0)hy(0)] (B.5)

for a period of time short enough that the time variation of BxR and

does not cause _ to change sign.
ByR

Obviously, showing that condition (B.4) will always be satisfied at

some point in orbit for a given application is a matter of some importance.

For very small errors, (B.4) can be replaced by

ByR(0)hy(0) + BxR(0)hx(0) = 0 .
(B .6)

Using the untilted dipole magnetic field model of Appendix A, and

factoring out the coefficient -Me/2r_, (B.6) becomes:
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(sin 5 cos @sin 8. + 2 sin @cos @.)h (0) + (cos 5 sin 8.)h (0)
1 1 x z y

+ 3 sin@.
1 {hx(O) cos _ sin [2Cz(O) - 5] - by(O) cos [2CZ(O) - 5]} = O.

(B. 7)

The last term is periodic in J(0). This result may be rewritten as:

(sin 5 cos @ sin @. + 2 sin @ cos @.)h (0) + (cos 5 sin @.)h (0)
z z x m y

i i

+ 3 sin e. • h2(O) cos 2 g + h2(O) cos [2_(0) - 5 + 9] = 0 .
z x y

(B.S)

For satisfaction of this condition at some value of 5(0), the amplitude

of the periodic part must be greater than the constant term for all

small values of h and h . As an example, consider pointing the spin
x y

axis normal to the orbit plane (@ = 5 = 0). The required condition

3 sin ei_/h-(O) + h2(O) > h (0) sin 8.
V x y y z

which is clearly satisfied for nonzero orbital inclinations.

(B. 9)
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APPENDIXC. LYAPUNOV'S SECONDMETHOD

The second (or direct) method of Lyapunov is a powerful technique

for the study of the stability properties of systems of differential

equations. It is most valuable in those cases for which such techniques

as the'Routh-Hurwitz test (applicable to linear statiorrary systems) and

the Floquet theory (applicable to linear sys%ems with periodic

coefficients) fail [Ref. C-l]. This appendix presents a brief summary of

the basic concepts of Lyapunov's second method. The primary source upon

which this discussion is based is Ref. 4-4.

A. PRELIMINARY CONCEPTS

Assume that we are concerned with a physical system which can be

adequately described by the vector differential equation

z = g(z,t) (C.l)

m

where z is an n-dimensional vector with real components and t is

time. If z = z (t) is a solution (an unperturbed motion) of the system
o

(C.I), a new n-vector x = z-z (t) can be defined. From (C.l), this
o

new vector must satisfy the following equations of the perturbed motion:

x = f(x,t) (C.2)

where

f(x,t) = g(X+Zo,t) - g(Zo,t)

B

If, as is often the case, the unperturbed solution is Zo(t) = 0, the

equations of the perturbed motion are the same as the original equations

of motion (C.I).

It is common practice to assume that the components of f(x,t) are

continuous functions of t and the components of x in some open region

G containing the origin (x = O) for all t _ 0. A further restriction
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upon the right-hand side of (C.2) is that in every bounded closed sub-

region of G, the functions f.(x,t) satisfy a Lipschitz condition with
1

respect to x. That is,

(IIfi(x' t) - f (_' t)[ gM ° sup x'. - xj' i ' . j
3 2

(c.3)

where M is a positive constant.
o

Following are two stability definitions quoted (in essence) from

Krasovskii (Ref. 4-4):

Definition i: Stability

The null solution x = O of the system (C.2) is said to be stable

(at t = t ) provided that for arbitrary E > 0 there is a 5(E,t o)o '

such that, whenever [[Xol [ < 5, the inequality [)_(t;Xo,to)[[ < e is

satisfied for all t > t .
o

Definition 2: Asymptotic Stability

The null solution x = O of the system (C.2) is called

asymptotically stable and the region G 5 of x space is said to

lie in the region of attraction of the point x = O (at t = t ),
o

provided that the conditions of Definition 1 are satisfied, and pro-

vided further that _(t,Xo,-- to ) _ _ as t _ and _(t;Xo,to)'_'F

for all t >_ to and for Xo'E'Gs. Here F is some subregion of G

which is given in advance and with which the physical problem is

intrinsically concerned.

If the null solution is asymptotically stable for all points x o from

which motions originate, the equilibrium is said to be asymptotically

stable in-the-large (ASIL). If the region of attraction of x = O is

the entire x space, the origin is said to possess global asymptotic

stability.

In the following discussion _(t;_o,to)

which takes on the value Xo at t = to;

is the trajectory of (C.2)

that is, _(to;_o'to) : Xo"
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Definition 3: Instability

Any motion which is not stable (Definition i) is said to be

unstable.

B. LYAPUNOV' S THEOR_S

Lyapunov's second method is based upon a real scalar (Lyapunov)

function V(x,t) which is defined and continuous for all t > 0 in some

region F of the n-dimensional state space. It is assumed that

V(O,t) = 0 for all t > 0. The following definitions and theorems are

again quoted in essence from Krasovskii [Ref. 4-4].

Definition 4: Semidefinite Function

If the inequality

v(x,t) _ o [or v(x,t) C o]

holds for all _ in r and for all t > O, the function V(_,t)

is said to be semidefinite in the region F.

Definition 5: Definite Function

Let V(_) be a function which does not depend explicitly on the

time t. The function V(x) is called definite in the region F if

it is positive definite (or negative definite) in the region F; that

is, if for all x in F (x _ O), the inequality

V(x) > 0 [or V(x) < 0]

holds. The time dependent function V(x,t) is called positive

definite (negative definite) if

v(_,t) _ v(_)[v(_,t) C - u(_,t)]
m

for x e F , t > 0

holds for some positive definite function U(x).
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Definition 6:

A function

the region F,

that W(O) = 0

Infinitely Small Upper Bound

V(x,t) admits an infinitely small upper bound in

provided there is a continuous function W(x) such

and

holds for all x

[v(_,t)[ g w(_)

in F, t >0.

L[apunov's Theorem on Stability

Suppose there exists a function V which is definite along

every trajectory of (C.2) and is such that the total time derivative

is semidefinite of opposite sign (or identically zero) along every

trajectory of (C.2). Then the perturbed motion is stable• If a

function V exists with these properties and admits to an infinitely

• _- _4__+_ ¢,,,_+_ _ _pp_it_ _n thatsmall upper bound, and l_ v _ u_ ..... _ ........ _ ..........

of V), it can be shown further that every perturbed trajectory

which is sufficiently close to the unperturbed motion x = O approaches

the latter asymptotically.

Lyapunov's First Theorem on Instability

Suppose a function V

definite along every trajectory of (C.2); suppose V admits an

infinitely small upper bound; and suppose that for all values of

above a certain bound there are arbitrarily small values x of
• s

for which

exists for which the total derivative is

V has the same sign as its derivative.

t

Then the perturbed

motion is unstable.

C. APPLICATION OF LYAPUNOV'S SECOND METHOD

The key to application of the second method lies in finding a

Lyapunov function V with the required properties.* There are formalized

Modern authors have developed theorems which relax the constraints

upon V. See, for example, the theorems of Krasovskii in Chapter IV

of this report, which allow the demonstration of asymptotic stability

and instability with V semidefinite.
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procedures for generating Lyapunov functions which are sometimes useful

[Refs. C-2, 0-3, and C-4]. Often, candidates for Lyapunov functions are

suggested by physical considerations; for example, Pringle has shown that

the Hamiltonian function is an ideal Lyapunov function for mechanical

systems [Ref. C-5]. The Lyapunov functions presented in Chapter IV of

this study were also suggested by physical considerations. Reference 4-1

devotes a chapter to application of the second method.
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